Performance requirements and test methods for BeiDou/Global Navigation Satellite Systems (GNSS) timing unit
目 次

前言 .. III
1 范围 ... 1
2 规范性引用文件 ... 1
3 术语和定义、缩略语 .. 1
 3.1 术语和定义 ... 1
 3.2 缩略语 ... 3
4 要求 .. 4
 4.1 总则 ... 4
 4.2 组成 ... 4
 4.3 功能 ... 4
 4.4 性能 ... 5
 4.5 接口 ... 8
 4.6 环境条件 ... 11
5 测试方法 ... 12
 5.1 测试环境条件 ... 12
 5.2 测试信号 ... 12
 5.3 测试设备 ... 12
 5.4 测试场地 ... 12
 5.5 功能测试 ... 12
 5.6 性能测试 ... 13
附录 A（规范性附录） IRIG-B 码码元定义及波形... 22
参考文献 ... 27
前 言

为适应我国卫星导航发展对标准的需要，全国北斗卫星导航标准化技术委员会组织制定北斗专项标准，推荐有关方面参考采用。

本标准由中国卫星导航系统管理办公室提出。

本标准由全国北斗卫星导航标准化技术委员会归口。

本标准起草单位：中国科学院国家授时中心、中国卫星导航工程中心、中国航天标准化研究所、中国电子科技集团公司第二十研究所、郑州威科姆科技股份有限公司。

本标准主要起草人：胡永辉、吴海玲、武建锋、张向波、宋成、王如龙、何在民、吴华兵、杨玉清、王康、王维嘉、吕宏春。
北斗/全球卫星导航系统（GNSS）
定时单元性能要求及测试方法

1 范围

本标准规定了全球卫星导航系统（GNSS）定时单元的性能要求和测试方法。

本标准适用于支持北斗卫星导航系统的全球卫星导航系统（GNSS）定时单元（以下简称“定时单元”）的研制、生产、检测和应用。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件，仅注日期的版本适用于本文件。凡是不注日期的引用文件，其最新版本（包括所有的修改单）适用于本文件。

GB/T 6107 使用串行二进制数据交换的数据终端设备和数据电路终接设备之间的接口
GB/T 11014 平衡电压数字接口电路的电气特性
SJ/T 11423 GPS授时型接收设备通用规范
SJ 20726 GPS定时接收设备通用规范
BD 110001-2015 北斗卫星导航术语
BD 410004-2015 北斗/全球卫星导航系统（GNSS）接收机导航定位数据输出格式
RFC 2030 简单网络时间协议V4版（Simple Network Time Protocol (SNTP) , Version 4 for IPv4, IPv6 and OSI）

3 术语和定义、缩略语

3.1 术语和定义

BD 110001-2015 界定的以及下列术语和定义适用于本文件。

3.1.1

北斗时 BeiDou Time，BDT
BDS 建立和保持的时间基准，采用国际单位制秒的无闰秒连续时间。北斗时的起始历元是 UTC 2006 年 1 月 1 日的 00:00:00，通过 UTC（NTSC）与 UTC 建立联系。北斗时使用周计数和周内秒表示。

3.1.2

GNSS 定时单元 Global Navigation Satellite Systems timing unit
接收 GNSS 卫星信号，输出标准时间信号和时码信息的单元。

3.1.3

频率准确度 frequency accuracy
频率源实际输出的频率值与其频率标称值的相对变化量。
注 1：频率准确度也称为频率偏移(frequency bias)，一般称为偏差；
注 2：以上定义参考 GB/T 19391-2003 和 SJ 20726 中的术语“频率准确度”确定。

3.1.4

频率稳定度 frequency stability
频率源输出频率的随机起伏程度。时域表征量为在某一时间间隔（采样时间）内平均频率的双
取样方差（阿伦方差）平方根值。
注：以上定义参考 SJ/T 11423 中的术语“频率稳定度”确定。

3.1.5

共视比对 time comparison using common view methods
两地设备同时测量本地时钟相对于同一颗卫星同一时刻的时差，经交换数据，计算得到两地时
钟钟差的一种高精度时间比对方法。
注：以上定义参考 GB/T 19391-2003 中的术语“共视比对”确定。

3.1.6

时间报文 time message
包含时间信息和报头、报尾等标志的信息串。

3.1.7

秒脉冲 1 Pulse Per Second，1PPS
一种时间基准信号，每秒一个脉冲。

3.1.8

分脉冲 1 Pulse Per Minute，1PPM
一种时间基准信号，每分钟一个脉冲。

3.1.9

时脉冲 1 Pulse Per Hour，1PPH
一种时间基准信号，每小时一个脉冲。

3.1.10
IRIG-B 码 Inter-range instrumentation group-B，IRIG-B
串行时间交换码的一种，分为 IRIG-B(AC)交流码和 IRIG-B(DC)直流码。

3.1.11
位置保持模式 position-hold mode
通过设置 GNSS 接收机天线的精确坐标，获得定时信息的模式。

3.1.12
自主定位模式 autonomous positioning mode
通过接收卫星导航信号，自主解算获得定位和定时信息的模式。

3.1.13
冷启动首次定时时间 cold start time to first timing
用户接收设备在星历、历书、概略时间和概略位置未知的状态下，从开机到首次输出正确的时间信号和信息所需的时间。

3.1.14
热启动首次定时时间 hot start time to first timing
用户接收设备在星历、历书、概略时间和概略位置已知的状态下，从开机到首次输出正确的时间信号和信息所需的时间。

3.1.15
重捕获时间 reacquisition time
用户设备在接收的导航信号短时失锁后，从信号恢复到重新捕获导航信号所需的时间。

3.1.16
捕获灵敏度 acquisition sensitivity
用户设备在冷启动条件下，捕获导航信号并正常定位所需的最低信号电平。

3.1.17
重捕获灵敏度 reacquisition sensitivity
用户设备在接收的导航信号短时失锁后，重新捕获导航信号并正常定位所需的最低信号电平。

3.1.18
跟踪灵敏度 tracking sensitivity
用户设备在正常定位后，能够继续保持对导航信号的跟踪和定位所需的最低信号电平。

3.1.19
系统时间 system time
全球卫星导航系统所建立和保持的时间，如 GPS 系统时间（GPST）、北斗时（BDT）等。

3.2 缩略语
下列缩略语适用于本文件。
BDS——BeiDou Navigation Satellite System，北斗卫星导航系统；
GLONASS——Global Navigation Satellite System，格洛纳斯卫星导航系统；
GNSS——Global Navigation Satellite Systems，全球卫星导航系统；
GPS——Global Positioning System，全球定位系统；
HDOP——Horizontal Dilution of Precision，水平精度因子；
NTP——Network Time Protocol，网络时间协议；
PDOP——Positional Dilution of Precision，位置精度因子；
PTP——Precision Time Protocol，精密时间协议；
SNTP——Simple Network Time Protocol，简单网络时间协议；
TWSTFT——Two-way Satellite Time and Frequency Transfer，卫星双向时间频率传递；
UTC——Universal Time Coordinated，协调世界时。

4 要求

4.1 总则

本标准中的定时单元通过天线接收GNSS公开服务信号，其中BDS为必选信号，进行捕获、跟踪、解扩、解调与解算处理，实现定时功能，根据默认设置或交互指令输出标准时间信号、时码信息、数据信息、状态信息。

4.2 组成

GNSS定时单元应至少包括GNSS接收天线和GNSS定时处理单元，定时单元所需时钟可在外部频标和内部晶振之间切换，如图1所示。

4.3 功能

4.3.1 定时模式

定时单元包括位置保持和自主定位两种定时模式。

4.3.2 参数设置

包括天线坐标输入、定时模式选择、输出时间系统选择、时间自主完好性检测门限设置、初始时间设定、通信参数设定等参数。
4.3.3 GNSS 定时

定时单元通过接收GNSS信号，解算出导航电文及相关信息，由定时单元自主计算钟差，并修正本地时间，使本地时间与UTC或系统时间同步。

4.3.4 时间系统选择

定时单元具备时间系统选择功能，即可以通过设置选择输出UTC或系统时间。

4.3.5 天线开路、短路保护

定时单元具备天线开路、短路保护功能，并给出报警信息。

4.3.6 输出信息

定时单元输出信息应包括：定时信息、定位信息、状态信息以及可视卫星的仰角、方位角、信号载噪比、PDOP值等信息。

输出信息格式应符合BD 410004-2015对数据格式的要求。

4.4 性能

4.4.1 灵敏度

4.4.1.1 捕获灵敏度

捕获灵敏度应优于-130dBm。

定时单元在概略位置、概略时间、星历和历书未知的状态下开机，各颗卫星的单通道导航信号载波电平不高于-130dBm时，应能在300s内以1Hz更新率连续10次输出三维定位误差小于100m的定位数据。

4.4.1.2 重捕获灵敏度

重捕获灵敏度应优于-135dBm。

定时单元在正常定位状态下，GNSS卫星信号短时中断30s后恢复，各颗卫星的单通道导航信号载波电平不高于-135dBm时，应能在300s内以1Hz更新率连续10次输出三维定位误差小于100m的定位数据。

4.4.1.3 跟踪灵敏度

跟踪灵敏度应优于-140dBm。

定时单元正常定位后，各颗卫星的单通道导航信号载波电平降低到-140dBm时，应能在300s内以1Hz更新率连续10次输出三维定位误差小于100m的定位数据。

4.4.2 首次定位时间

4.4.2.1 冷启动首次定位时间

在输入卫星导航信号功率电平为-130dBm时，定时单元在概略位置、概略时间、星历和历书未知的状态下开机，到首次能够在其后10s连续输出三维定位误差小于100m的定位数据，所需时间应不超过60s。
4.4.2.2 热启动首次定位时间

在输入卫星导航信号功率电平为-130dBm时，定时单元在概略位置、概略时间、星历和历书已知的状态下开机，到首次能够在其后10s连续输出三维定位误差小于100m的定位数据，所需时间应不超过5s。

4.4.3 首次定时时间

4.4.3.1 冷启动首次定时时间

在输入卫星导航信号功率电平为-130dBm时，定时单元在概略位置、概略时间、星历和历书未知的状态下开机，到首次能够在其后10s连续输出定时误差小于300ns的定时信号和信息，所需时间应不超过100s。

4.4.3.2 热启动首次定时时间

在输入卫星导航信号功率电平为-130dBm时，定时单元在概略位置、概略时间、星历和历书已知的状态下开机，到首次能够在其后10s连续输出定时误差小于300ns的定时信号和信息，所需时间应不超过15s。

4.4.4 重捕获时间

定时单元在输入GNSS卫星信号功率电平为-130dBm且正常定时状态下，GNSS卫星信号短时中断30s，从信号恢复到首次能够在其后10s连续输出定时误差小于300ns的定时信号和信息，所需时间应不超过5s。

4.4.5 定位精度

在HDOP≤4或PDOP≤6时，水平定位精度优于10m（95%），垂直定位精度优于15m（95%）。

注：本标准中定位精度仅指静态定位精度。

4.4.6 定时精度

4.4.6.1 相对于UTC定时精度

相对于UTC定时精度应满足：

a) 位置保持模式：≤150ns；

b) 自主定位模式：≤250ns。

4.4.6.2 相对于系统时间定时精度

相对于系统时间定时精度应满足：

a) 位置保持模式：≤50ns；

b) 自主定位模式：≤150ns。

4.4.7 秒、分、时脉冲

秒、分、时脉冲应满足：

a) 上升沿：≤10ns；

b) 脉冲宽度：20µs±200ns；

c) 抖动：≤2ns。
4.4.8 频率信号输出

4.4.8.1 幅度
输出频率信号为10MHz的方波，TTL/LVTTL电平；或输出正弦波，3.5V≤峰峰值≤5V。

4.4.8.2 频率准确度
输出频率准确度应优于1×10⁻⁹，取样时间为24h。

4.4.8.3 频率稳定度
频率稳定度应满足如下要求:
 a) 1s 稳定度优于 5×10⁻⁹;
 b) 10s 稳定度优于 1×10⁻⁹;
 c) 100s 稳定度优于 5×10⁻¹⁰;
 d) 10000s 稳定度优于 5×10⁻¹²;
 e) 1d 稳定度优于 1×10⁻¹²。

4.5 接口

4.5.1 输入输出接口

4.5.1.1 外接频率参考
外接频率为10MHz正弦波，峰峰值范围为3.5V~5V。

4.5.1.2 交互接口
交互接口为串口 RS-232C/RS-422/RS-485 或者网口 RJ45。

4.5.1.3 脉冲信号输出
脉冲信号输出应满足如下要求:
 a) 脉冲信号包括 IPPS、IPPM、IPPH 或可编程脉冲信号等;
 b) 阻抗: 50Ω;
 c) 接口电平: TTL/LVTTL 电平。

4.5.1.4 10MHz 频率输出
10MHz 频率输出为方波或正弦波，应满足如下要求:
 a) 方波，TTL/LVTTL 电平;
 b) 正弦波，3.5V≤峰峰值≤5V。

4.5.2 串行时间报文

4.5.2.1 串行口参数
串行口参数要求如下:
 a) 波特率: 4800、9600、19200、38400、57600、115200 Baud 可选，缺省设置应为 9600Baud;
 b) 数据格式: 起始位 1 位、数据位 8 位、停止位 1 位、无校验。

4.5.2.2 串行口时间报文格式
串行口输出的报文宜采用ASCII码格式。
报文发送时刻，每秒输出1帧。帧头为 #，与秒脉冲 (1PPS) 的前沿对齐，偏差小于 5ms；串行口时间报文标准格式见表1，波形如图2所示。

表 1 串行口标准时间报文格式

<table>
<thead>
<tr>
<th>字节序号</th>
<th>含义</th>
<th>内容</th>
<th>取值范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>帧头</td>
<td><code><#></code></td>
<td><code>'#'</code></td>
</tr>
<tr>
<td>2</td>
<td>状态标志 1</td>
<td>用下列 4 个 bit 合成的 16 进制数对应的 ASCII 码值： Bit 3：保留 = 0； Bit 2：保留 = 0； Bit 1：闰秒预告（LSP）：在闰秒来临前 59 s 置 1，在闰秒到来后的 00 s 置 0； Bit 0：闰秒标志（LS）：0：正闰秒，1：负闰秒 注：将 Bit3~Bit0 这 4 位二进制数表示的 16 进制数转换为对应的 ASCII 码，例如：二进制数 0010，对应 16 进制数为 0x2，转化为对应的 ASCII 码值为 50，ASCII 码为 '2'。</td>
<td>`0''9'，'A''F'</td>
</tr>
<tr>
<td>3</td>
<td>状态标志 2</td>
<td>用下列 4 个 bit 合成的 16 进制数对应的 ASCII 码值： Bit 3：夏令时预告（DSP）：在夏令时切换前 59 s 置 1； Bit 2：夏令时标志（DST）：在夏令时期间置 1； Bit 1：半小时时区偏移：0：不增加，1：时间偏移值额外增加 0.5 hr； Bit 0：时区偏移值符号位：0：+，1：-</td>
<td>`0''9'，'A''F'</td>
</tr>
<tr>
<td>4</td>
<td>状态标志 3</td>
<td>用下列 4 个 bit 合成的 16 进制数对应的 ASCII 码值： Bits 3-0：时区偏移值（hr）：串口报文时间与 UTC 时间的差值，报文时间减时间偏移（带符号）等于 UTC 时间（时间偏移在夏时制期间会发生变化）</td>
<td>`0''9'，'A''F'</td>
</tr>
<tr>
<td>5</td>
<td>状态标志 4</td>
<td>用下列 4 个 bit 合成的 16 进制数对应的 ASCII 码值： Bits 03-00：时间质量： 0x0：正常工作状态，时钟同步正常 0x1：时钟同步异常，时间准确度优于 1 ns 0x2：时钟同步异常，时间准确度优于 10 ns 0x3：时钟同步异常，时间准确度 优于 100 ns 0x4：时钟同步异常，时间准确度 优于 1us 0x5：时钟同步异常，时间准确度 优于 10us 0x6：时钟同步异常，时间准确度 优于 100us 0x7：时钟同步异常，时间准确度 优于 1 ms 0x8：时钟同步异常，时间准确度 优于 10 ms 0x9：时钟同步异常，时间准确度 优于 100 ms 0xA：时钟同步异常，时间准确度 优于 1 s 0xB：时钟同步异常，时间准确度 优于 10 s 0xF：时钟严重故障，时间信号不可信</td>
<td>`0''9'，'A''F'</td>
</tr>
<tr>
<td>6</td>
<td>年千位</td>
<td>ASCII 码值</td>
<td>'2'</td>
</tr>
<tr>
<td>7</td>
<td>年百位</td>
<td>ASCII 码值</td>
<td>'0'</td>
</tr>
<tr>
<td>8</td>
<td>年十位</td>
<td>ASCII 码值</td>
<td>`0'~'9'</td>
</tr>
<tr>
<td>9</td>
<td>年个位</td>
<td>ASCII 码值</td>
<td>`0'~'9'</td>
</tr>
</tbody>
</table>
表1 串行口标准时间报文格式（续）

<table>
<thead>
<tr>
<th>字节序号</th>
<th>含义</th>
<th>内容</th>
<th>取值范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>月十位</td>
<td>ASCII码值</td>
<td>‘0’～’1’</td>
</tr>
<tr>
<td>11</td>
<td>月个位</td>
<td>ASCII码值</td>
<td>‘0’～’9’</td>
</tr>
<tr>
<td>12</td>
<td>日十位</td>
<td>ASCII码值</td>
<td>‘0’～’3’</td>
</tr>
<tr>
<td>13</td>
<td>日个位</td>
<td>ASCII码值</td>
<td>‘0’～’9’</td>
</tr>
<tr>
<td>14</td>
<td>时十位</td>
<td>ASCII码值</td>
<td>‘0’～’2’</td>
</tr>
<tr>
<td>15</td>
<td>时个位</td>
<td>ASCII码值</td>
<td>‘0’～’9’</td>
</tr>
<tr>
<td>16</td>
<td>分十位</td>
<td>ASCII码值</td>
<td>‘0’～’5’</td>
</tr>
<tr>
<td>17</td>
<td>分个位</td>
<td>ASCII码值</td>
<td>‘0’～’9’</td>
</tr>
<tr>
<td>18</td>
<td>秒十位</td>
<td>ASCII码值</td>
<td>‘0’～’6’</td>
</tr>
<tr>
<td>19</td>
<td>秒个位</td>
<td>ASCII码值</td>
<td>‘0’～’9’</td>
</tr>
<tr>
<td>20</td>
<td>校验字节高位</td>
<td>从“状态标志1”直到“秒个位”逐字节异或的结果（即：异或校验），使用ASCII码值表示</td>
<td>‘0’～’9’</td>
</tr>
<tr>
<td>21</td>
<td>校验字节低位</td>
<td>将校验字节的十六进制数高位和低位分别使用ASCII码值表示</td>
<td>‘A’～’F’</td>
</tr>
<tr>
<td>22</td>
<td>结束标志</td>
<td>CR</td>
<td>0DH</td>
</tr>
<tr>
<td>23</td>
<td>结束标志</td>
<td>LF</td>
<td>0AH</td>
</tr>
</tbody>
</table>

图2 串行通信报文发送波形

4.5.2.3 接口定义

4.5.2.3.1 接口类型

接口类型包括网口RJ45，串口RS-232C、RS-422和RS-485，其中RS-422和RS-485为差分传输模式。

4.5.2.3.2 网口

网口协议遵从TCP/IP，报文格式为TCP或UDP，连接器为RJ45。

4.5.2.3.3 RS-232C

串口RS-232C电气特性应符合GB/T 6107的规定，连接器为9针D型小型阳插座，9针插座针的编号和定义见表2。

表2 9针D型阳插座9针编号和定义

<table>
<thead>
<tr>
<th>针编号</th>
<th>RS-232C信号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>空</td>
</tr>
<tr>
<td>2</td>
<td>接收数据RXD</td>
</tr>
<tr>
<td>3</td>
<td>发送数据TXD</td>
</tr>
<tr>
<td>4</td>
<td>空</td>
</tr>
<tr>
<td>5</td>
<td>信号地GND</td>
</tr>
<tr>
<td>6-9</td>
<td>空</td>
</tr>
</tbody>
</table>
4.5.2.3.4 RS-422

RS-422接口应符合GB/T 11014的规定。连接器为9针D型小型阳插座，9针插座针的编号和定义见表3。

表 3 9针D型阳插座9针编号和定义

<table>
<thead>
<tr>
<th>针编号</th>
<th>RS-422信号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>空</td>
</tr>
<tr>
<td>2</td>
<td>发送数据 TXD-</td>
</tr>
<tr>
<td>3</td>
<td>接收数据 RXD-</td>
</tr>
<tr>
<td>4~6</td>
<td>空</td>
</tr>
<tr>
<td>7</td>
<td>接收数据 RXD+</td>
</tr>
<tr>
<td>8</td>
<td>发送数据 TXD+</td>
</tr>
<tr>
<td>9</td>
<td>空</td>
</tr>
</tbody>
</table>

4.5.2.3.5 RS-485

表 4 9针D型阳插座9针编号和定义

<table>
<thead>
<tr>
<th>针编号</th>
<th>RS-485信号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1~2</td>
<td>空</td>
</tr>
<tr>
<td>3</td>
<td>接收数据 RXD-</td>
</tr>
<tr>
<td>4</td>
<td>接收数据 RXD+</td>
</tr>
<tr>
<td>5</td>
<td>发送数据 TXD+</td>
</tr>
<tr>
<td>6</td>
<td>空</td>
</tr>
<tr>
<td>7</td>
<td>发送数据 TXD-</td>
</tr>
<tr>
<td>8~9</td>
<td>空</td>
</tr>
</tbody>
</table>

4.5.3 IRIG-B 码（可选）

4.5.3.1 IRIG-B（DC）码

IRIG-B（DC）码应满足如下要求：

a) 每秒1帧，包含100个码元，每个码元10ms；

b) 脉冲上升时间：≤20ns；

c) 抖动时间：≤100ns；

d) 秒准时沿的时间准确度：优于1μs；

e) 接口类型：TTL电平或RS-422或RS-485；

f) 采用IRIG-B000格式。

4.5.3.2 IRIG-B（AC）码

IRIG-B（AC）码应满足如下要求：

a) 载波频率：1kHz；

b) 频率抖动：≤载波频率的1%；
c) 信号幅值（峰峰值）：高幅值为 3 V～12 V 可调，典型值为 10 V；低幅值符合 3:1～6:1 调
制比要求，典型调制比为 3:1；
d) 输出阻抗：600Ω，变压器隔离输出；
e) 秒准时点的时间准确度：优于 10µs；
f) 采用 IRIG-B120 格式。

4.5.4 网络时间接口（可选）

4.5.4.1 NTP 接口

NTP 接口应满足如下要求：

a) 工作模式：客户端/服务器端；
b) 同步精度：时钟处于跟踪锁定状态时，各同步精度应满足表 5 要求；
c) 网络接口：RJ45；
d) 支持的协议：RFC 1305（NTP）和 RFC 2030（SNTP）。

<table>
<thead>
<tr>
<th>工作环境的温度和湿度</th>
<th>使用场所</th>
</tr>
</thead>
</table>

4.5.4.2 PTP 接口

PTP 接口应满足如下要求：

a) 工作模式：主钟/从钟；
b) 同步精度：时钟处于跟踪锁定状态时，在局域网内同步精度优于 1µs；
c) 网络接口：RJ45；
d) 支持的协议：IEEE Std 1588-2008（PTPv2）。

4.6 环境适应性

4.6.1 工作环境的温度和湿度

定时单元工作环境的温度和相对湿度见表6，根据实际应用场合选择。

| 使用场所 | 室内 | 遮蔽场所 | 室外 |
|---------------------|----------|

4.6.2 贮存、运输环境

贮存、运输环境温度为 -55℃～+125℃，在不施加任何激励量的条件下，设备应不出现不可逆变
化。温度恢复正常后，设备的性能应仍符合本标准中的有关要求。
5 测试方法

5.1 测试环境条件

除另有规定外，所有试验应在以下条件下进行：

a) 温度：15℃～35℃；
b) 相对湿度：20%～80%。

如果实际测试不能满足上述环境条件要求，测试结果中应标明测试时真实的环境温度和相对湿度。

5.2 测试信号

在测试中根据需要使用实际的卫星导航信号和模拟测试信号。模拟器产生的信号必须具有与卫星信号相同的特性，在正常动态星座下，能产生几何位置良好（HDOP≤4或PDOP≤6）的卫星信号。

5.3 测试设备

现场主要测试仪器和设备包括：时间参考源、频率参考源、信号模拟源、标准测试接收机、示波器、时间间隔计数器、比仪、数据采集处理单元等。

所有测试用仪器、设备应有良好的测量范围、分辨率、准确度和稳定度，其性能应满足被测性能指标的要求；测试用仪器设备应经过校检或校准，符合性能指标要求，并在校检或校准有效期内。

5.4 测试场地

测试场地应没有强电磁干扰源，如雷达、电火花等，测试场地的电磁干扰强度应不影响定时单元的性能测试。

5.5 功能测试

5.5.1 测试项目

本标准规定的功能测试项目及对应的要求、测试方法见表7。

<table>
<thead>
<tr>
<th>序号</th>
<th>测试项目</th>
<th>功能要求</th>
<th>测试方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定时模式</td>
<td>位置保持</td>
<td>4.3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>自主定位</td>
<td>4.3.1</td>
</tr>
<tr>
<td>2</td>
<td>参数设置</td>
<td></td>
<td>4.3.2</td>
</tr>
<tr>
<td>3</td>
<td>GNSS 定时</td>
<td></td>
<td>4.3.3</td>
</tr>
<tr>
<td>4</td>
<td>时间系统选择</td>
<td></td>
<td>4.3.4</td>
</tr>
<tr>
<td>5</td>
<td>天线开路、短路保护</td>
<td></td>
<td>4.3.5</td>
</tr>
<tr>
<td>6</td>
<td>输出信息</td>
<td></td>
<td>4.3.6</td>
</tr>
</tbody>
</table>

5.5.2 定时模式测试

5.5.2.1 位置保持模式

用实际卫星信号进行测试。设置被定时单元接收天线的精确坐标，然后查看定时单元是否能正确输出定时信息。
5.5.2.2 自主定位模式

用实际卫星信号进行测试。被测定时单元接收不少于4颗卫星导航的信号，自主定位后查看定时单元是否能正确输出定位和定时信息。

5.5.3 参数设置测试

查看定时单元是否具备天线坐标、定时模式、时间系统选择、时间自主完好性检测门限、初始时间、通信参数等参数设置功能。

5.5.4 GNSS 定时测试

用实际卫星信号进行测试。通过计算机串口测试软件查看定时单元是否能正确输出定时信息。

5.5.5 时间系统选择测试

用实际卫星信号进行测试。通过计算机串口测试软件查看定时单元是否具备此功能。

5.5.6 天线开路、短路保护测试

在定时单元开机正常工作后，分别使定时单元接收天线为开路和短路状态，查看定时单元是否给出报警信息。

5.5.7 输出信息测试

在定时单元开机正常工作后，通过计算机串口测试软件查看定时单元是否具备此功能。

5.6 性能测试

5.6.1 测试项目

本标准规定的性能测试项目及对应的要求测试方法见表8。

<table>
<thead>
<tr>
<th>序号</th>
<th>测试项目</th>
<th>性能要求</th>
<th>测试方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>灵敏度</td>
<td>捕获灵敏度</td>
<td>4.4.1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重捕获灵敏度</td>
<td>4.4.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>跟踪灵敏度</td>
<td>4.4.1.3</td>
</tr>
<tr>
<td>2</td>
<td>首次定位时间</td>
<td>冷启动首次定位时间</td>
<td>4.4.2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>热启动首次定位时间</td>
<td>4.4.2.2</td>
</tr>
<tr>
<td>3</td>
<td>首次定时时间</td>
<td>冷启动首次定时时间</td>
<td>4.4.3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>热启动首次定时时间</td>
<td>4.4.3.2</td>
</tr>
<tr>
<td>4</td>
<td>重捕获时间</td>
<td>4.4.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>定位精度</td>
<td>4.4.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>定时精度</td>
<td>相对于 UTC 定时精度</td>
<td>4.4.6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>相对于系统时间定时精度</td>
<td>4.4.6.2</td>
</tr>
<tr>
<td>7</td>
<td>秒、分、时脉冲</td>
<td>4.4.7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>频率信号输出</td>
<td>幅度</td>
<td>4.4.8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>频率准确度</td>
<td>4.4.8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>频率稳定度</td>
<td>4.4.8.3</td>
</tr>
</tbody>
</table>
5.6.2 灵敏度测试

5.6.2.1 捕获灵敏度测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s，每次设置模拟器输出的各颗卫星的每一通道信号电平从定时单元不能捕获的信号功率电平开始，以1dB步进增加，若被检测定时单元的技术文件中声明了捕获灵敏度量值，则从低于该量值2dB的电平值开始。

在模拟器输出信号的每个电平值下，被检测定时单元在冷启动状态下开机，若其能够在300s内捕获导航信号，并以1Hz的更新率连续10次输出三维定位误差小于100m的定位数据，记录该电平值，应符合4.4.1.1的要求。

5.6.2.2 重捕获灵敏度测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s，每次设置模拟器输出的各颗卫星的每一通道信号电平从定时单元不能捕获的信号功率电平开始，以1dB步进增加，若被检测定时单元的技术文件中声明了重捕获灵敏度量值，则从低于该量值2dB的电平值开始。

在模拟器输出信号的每个设置电平值下，被检测定时单元正常定位（此时为使导航能够正常定位，可先输出较高的可定位电平）后，控制模拟器中断卫星信号30s再恢复到该设置电平值，若定时单元能够在信号恢复后300s内捕获导航信号，并以1Hz的更新率连续10次输出三维定位误差小于100m的定位数据，记录该设置电平值，应符合4.4.1.2的要求。

5.6.2.3 跟踪灵敏度测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s。在被测定时单元正常定位的情况下，设置模拟器输出的各颗卫星的各通道信号电平以1dB步进降低。在模拟器输出信号的各电平值下，测试定时单元能否在300s内连续10次输出三维定位误差小于100m的定位数据，找出能够使定时单元满足该定位要求的最低电平值，应符合4.4.1.3的要求。

5.6.3 首次定位时间测试

5.6.3.1 冷启动首次定位时间测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s。使被检测定时单元在上述任意一种冷启动状态下开机：

a) 为被检测定时单元初始化一个距实际测试位置不少于1000km但不超过10000km的伪位置，或删除当前历书数据；

b) 7天以上不加电。

以1Hz的位置更新率连续记录输出的定位数据，找出首次连续10次输出三维定位误差不超过100m的定位数据的时刻，计算从开机到上述10个输出时刻中第1个时刻的时间间隔，应符合4.4.2.1的要求。

5.6.3.2 热启动首次定位时间测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s。
在被测定时单元正常定位状态下，短时断电60s后，被测定时单元重新开机，以1Hz的位置更新率连续记录输出的定位数据，找出首次连续10次输出三维定位误差不超过100m的定位数据的时刻，计算从开机到上述10个输出时刻中第1个时刻的时间间隔，应符合4.4.2.2的要求。

5.6.4 首次定时时间测试

5.6.4.1 冷启动首次定时时间测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s。

按照5.6.3.1中使被测定时单元冷启动，然后以1Hz的更新率连续记录输出的定时信息，找出首次连续10次输出定时误差不超过300ns的定时信号和信息的时刻，计算从开机到上述10个输出时刻中第1个时刻的时间间隔，应符合4.4.3.1的要求。

5.6.4.2 热启动首次定时时间测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s。

在被测定时单元正常定位状态下，短时断电60s后，被测定时单元重新开机，以1Hz的更新率连续记录输出的定时信息，找出首次连续10次输出定时误差不超过300ns的定时信号和信息的时刻，计算从开机到上述10个输出时刻中第1个时刻的时间间隔，应符合4.4.3.2的要求。

5.6.5 重捕获时间测试

用模拟器进行测试，设置模拟器仿真用户直线运动，速度不高于2m/s。

在被测定时单元正常定位状态下，短时中断卫星信号30s后，恢复卫星信号，以1Hz的位置更新率连续记录输出的定位数据，找出卫星信号恢复后，首次连续10次输出三维定位误差不超过100m的定位数据的时刻，计算从卫星信号恢复到上述10个输出时刻中第1个时刻的时间间隔，应符合4.4.4的要求。

5.6.6 定位精度测试

将被测定时单元的天线固定在一个位置已知的基准点上，连续测试时间24h以上，将获取的定位数据与基准点坐标进行比较，数据处理中应剔除HDOP>4或PDOP>6的定位数据，计算定位误差及其分布，应符合4.4.5的要求。

5.6.7 定时精度测试

5.6.7.1 相对于UTC的定时精度测试

5.6.7.1.1 概述

相对于UTC的定时精度测试可分为直接获取UTC信号的测试、间接获取UTC信号的测试和比较法测试三种方法。

5.6.7.1.2 可直接获取UTC信号的测试

当测试现场可直接获取UTC信号时，测试采用时刻比对分析法，设备连接如图3所示，该方法主要以均值和标准偏差为测量依据。

测试步骤如下：

a) 按图3所示连接设备：
b）按要求预热被测定时单元；

c）按要求设置被测定时单元的工作模式，输入其内部时延，对工作在位置保持模式下的定时单元，还应输入其天线坐标，天线坐标的误差不大于 0.1m；

d）测量标准时间频率源输出的秒脉冲与被测定时单元输出的秒脉冲之间的时差 Δ_i，每 1s 测量一次，连续测量 24h，记录测量值。

图 3 可直接获取 UTC 信号的测试设备连接图

数据处理要求如下：

a）按公式（1）计算平均值

$$\Delta = \bar{\Delta} - \tau_1 - \tau_2 + \tau_3 + \Delta_{ns}, \bar{\Delta} = \left(\frac{1}{m} \sum_{i=1}^{m} \Delta_i \right)$$

式中：

Δ ——被测定时单元经延时修正后的定时偏差平均值，单位为纳秒 (ns)；

$\bar{\Delta}$ ——被测定时单元未经延时修正的定时偏差平均值，单位为纳秒 (ns)；

τ_1——天线电缆时延，单位为纳秒 (ns)；

τ_2——被测定时单元 1pps 输出电缆时延，单位为纳秒 (ns)；

τ_3——标准时间频率源 1pps 电缆时延，单位为纳秒 (ns)；

Δ_{ns}——标准时间频率源时间与 UTC 时间的偏差，单位为纳秒 (ns)；

m——观测次数；

Δ_i——被测定时单元与标准时间频率源时刻 i 的相对偏差，单位为纳秒 (ns)。

b）按公式（2）计算标准偏差：

$$S_{\Delta} = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} (\Delta_i - \bar{\Delta})^2}$$

式中：

S_{Δ}——定时标准偏差，单位为纳秒 (ns)。
c) 按公式 (3) 计算定时总偏差:

\[B_y = 2S_n + |\Delta| \] ... (3)

式中:

\(B_y \) ——定时总偏差，单位为纳秒 (ns)。

5.6.7.1.3 间接获取 UTC 信号的测试

当测试现场不能直接获取 UTC 信号时，由于没有可用的 UTC 信号和标准时间频率信号，所以需要建立与 UTC 或国家标准时间的测试链路，通过测试和比对确定本地标准时间与 UTC 或国家标准时间的钟差信息和频差信息，然后按照图 4 所示连接设备进行测试。测试系统最好采用经过标校过的测试系统，并在数据处理中考虑测试系统不确定度的影响。测试方法同 5.6.7.1.2。

![间接获取 UTC 信号的测试设备连接图](image)

图 4 间接获取 UTC 信号的测试设备连接图

5.6.7.1.4 比较法测试

当测试现场通过直接或间接都无法获取 UTC 信号时，可采用比较法。比较法测试的条件是需要一台经过测试标定过的定时接收机，其测试设备连接如图 5 所示。

测试步骤如下:

a) 按图 5 所示连接设备；
b) 按要求预热被测定时单元；
c) 测量已标定过的定时单元的 1PPS 信号与被测定时单元的 1PPS 信号之间的时差 \(\Delta \)。每 1s 测量一次，连续测量 24h，记录测量值。
数据处理要求如下：

a) 按公式（4）计算平均值:

\[
\Delta = \frac{1}{m} \left(\sum_{i=1}^{m} \Delta_i \right) - \tau_2 + \tau_4 + \Delta_{\text{ref}}, \quad \bar{\Delta} = \frac{1}{m} \sum_{i=1}^{m} \Delta_i \quad \text{………………(4)}
\]

式中:

\(\tau_4 \)——被标定定时单元 1pps 输出电缆时延，单位为纳秒（ns）。

b) 按公式（2）计算标准偏差:

c) 按公式（3）计算定时总偏差。

5.6.7.2 相对于系统时间的定时精度测试

5.6.7.2.1 可直接获取系统时间信号的测试

当测试现场可直接获取系统时间时，其测试方法、测试步骤和数据处理与相对于UTC定时精度的测试方法、测试步骤和数据处理相同，测试设备连接如图6所示。

测试步骤如下：
a) 按图6所示连接设备；
b) 按要求预热被定时单元；
c) 按要求设置被定时单元的工作模式，输入其内部时延，对工作在位置保持模式下的定时单元，还应输入其天线坐标，天线坐标的误差不大于0.1m；
d) 测量标准时间频率源输出的秒脉冲与被定时单元输出的秒脉冲之间的时差Δt。每1s测量一次，连续测量24h，记录测量值。

数据处理要求如下：
a) 按公式（1）计算平均值；
b) 按公式（2）计算标准偏差；
c) 按公式（3）计算定时总偏差。

5.6.7.2.2 间接获取系统时间信号的测试

在不能直接获取系统时间信号的情况下，由于没有可用的系统时间信号和标准频率信号，所以需要建立与系统时间的溯源链路，通过溯源和比对确定本地标准时间频率源与系统时间的钟差信息和频差信息，然后按照图7所示连接设备进行测试。溯源系统最好采用已经标校过的溯源系统，并在数据处理中考虑溯源系统不确定性的影响。测试方法同5.6.7.1.3。

图 7 间接获取系统时间信号的测试设备连接图

5.6.7.2.3 比较法测试

通过直接或间接都无法获取系统时间信号的情况下，可采用比较法。比较法测试的条件是需要一合经过测试标定过的定时接收机，其测试设备连接图如图6所示，测试步骤和数据处理与相对于UTC的定时精度采用的比较法测试步骤和数据处理相同。

5.6.8 秒、分、时脉冲测试

将脉冲信号输出至示波器，测量脉冲信号上升沿、脉冲宽度，应符合4.4.7的要求。

以5.6.7计算出的定时标准偏差表征定时抖动，定时抖动应符合4.4.7的要求。
5.6.9 频率信号输出测试

5.6.9.1 幅度测试

将频率信号输出至示波器，用示波器观察定时单元输出频率信号波形及幅度，应符合4.4.8的要求。

5.6.9.2 频率稳定度测试

频率稳定度测试的取样时间τ一般为1s、10s、100s、1000s和1d。1s、10s、100s和10000s的频率稳定度的测试可采用直接测频法和比相法。1d的频率稳定度的测试可采用比相法。

a) 直接测频法

将参考频率源输出与GNSS定时单元频率输出连接到频率计数器，用频率计数器直接测量频率值。测试框图见图8。

图8 直接测频法测试框图

图8中，f_x表示参考频率实际值，单位为赫兹（Hz）；f_r表示被测频率实际值，单位为赫兹（Hz）；不同取样时间的频率稳定度如公式（6）所示：

$$
\sigma_y(\tau) = \frac{1}{f_0} \sqrt{\frac{1}{m-1} \sum_{i=1}^{m-1} (f_{x+i} - f_x)^2} \tag{6}
$$

式中：
- σ_y ——频率稳定度；
- τ ——取样时间；
- m ——取样组数；
- f_{x+i} ——第$i+1$个取样时间内频率测量的平均值，单位为赫兹（Hz）；
- f_i ——第i个取样时间内频率测量的平均值，单位为赫兹（Hz）；
- f_0 ——被测频率标称值。

b) 比相法

GNSS定时单元输出频率和参考频率源的输出信号分别加到线性相位比较器（比相仪）相应的输入端，连续记录两个信号差的相位变化量。测试框图见图9。

图9 比相法测试框图

不同取样时间的频率稳定度如公式（7）所示：
\[
\sigma_y = \frac{1}{\tau} \sqrt{\frac{\sum_{i=1}^{n-1} (\Delta \phi_{i+1} - \Delta \phi_i)^2}{2(m-1)}}
\]

式中：
\(\Delta \phi_i \) ——第 \(i \) 次测量的累计相位差值，单位为秒（s）；
\(\Delta \phi_{i+1} \) ——第 \(i+1 \) 次测量的累计相位差值，单位为秒（s）。

5.6.9.3 频率准确度测试

频率准确度测试可采用直接测频法和比相法，取样时间 \(\tau \) 为24h，测试框图如图8和图9所示。

选用直接测频法，频率准确度按公式(8)计算：

\[
A = \frac{f_0 - \bar{f}_x}{f_0}
\]

式中：
\(A \) ——表示频率准确度；
\(f_0 \) ——被测频率标称值；
\(\bar{f}_x \) ——被测频率测量值的平均。

选用比相法，频率准确度按公式(9)计算：

\[
A = \frac{\bar{\Delta} \tau}{\tau}
\]

式中：
\(\bar{\Delta} \tau \) ——用时间单位表示的 N 个累积相位差值的平均值。

5.6.10 接口测试

用示波器观察定时单元输出的时间或频率信号；将定时单元数据端口与计算机相连接，检查数据格式和内容，应符合4.5要求。
附录 A
(规范性附录)

IRIG-B 码码元定义及波形

IRIG-B 码码元定义见表 A.1，IRIG-B 码中的时间为北京时间，IRIG-B 码波形图见图 A.1。

<table>
<thead>
<tr>
<th>码元序号</th>
<th>定义</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pr</td>
<td>基准码元</td>
</tr>
<tr>
<td>1～4</td>
<td>秒个位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>6～8</td>
<td>秒十位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P1</td>
<td>位置识别标志#1</td>
</tr>
<tr>
<td>10～13</td>
<td>分个位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>15～17</td>
<td>分十位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>19</td>
<td>P2</td>
<td>位置识别标志#2</td>
</tr>
<tr>
<td>20～23</td>
<td>时个位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>25～26</td>
<td>时十位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>27～28</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>29</td>
<td>P3</td>
<td>位置识别标志#3</td>
</tr>
<tr>
<td>30～33</td>
<td>日个位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>35～38</td>
<td>日十位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>P4</td>
<td>位置识别标志#4</td>
</tr>
<tr>
<td>40～41</td>
<td>日百位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>42～48</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>49</td>
<td>P5</td>
<td>位置识别标志#5</td>
</tr>
<tr>
<td>50～53</td>
<td>年个位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>索引位</td>
<td>置“0”</td>
</tr>
<tr>
<td>55～58</td>
<td>年十位, BCD 码, 低位在前</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>P6</td>
<td>位置识别标志#6</td>
</tr>
<tr>
<td>60</td>
<td>闰秒预告（LSP）</td>
<td>在闰秒来临前 1 s~59 s 置“1”，在闰秒到来后的 00 s 置“0”</td>
</tr>
<tr>
<td>61</td>
<td>闰秒（LS）标志</td>
<td>“0”：正常秒, “1”：负闰秒</td>
</tr>
<tr>
<td>62</td>
<td>夏时制预告（DSP）</td>
<td>在夏时制切换前 18~59 s 置“1”</td>
</tr>
<tr>
<td>63</td>
<td>夏时制（DST）标志</td>
<td>在夏时制期间置“1”</td>
</tr>
<tr>
<td>64</td>
<td>时间偏移符号位</td>
<td>“0”：+， “1”：-</td>
</tr>
<tr>
<td>65～68</td>
<td>时间偏移（小时），二进制，低位在前</td>
<td>时间偏移 = IRIG-B 时间－UTC 时间 (时间偏移在夏时制期间会发生变化)</td>
</tr>
<tr>
<td>69</td>
<td>P7</td>
<td>位置识别标志#7</td>
</tr>
<tr>
<td>码元序号</td>
<td>定义</td>
<td>说明</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 70 | 时间偏移（0.5 h） | “0”：不增加时间偏移量
“1”：时间偏移额外增加 0.5 h |
| 71～74 | 时间质量，二进制，低位在前 | 0x0：正常工作状态，时钟同步正常
0x1：时钟同步异常，时间准确度优于 1 ns
0x2：时钟同步异常，时间准确度优于 10 ns
0x3：时钟同步异常，时间准确度优于 100 ns
0x4：时钟同步异常，时间准确度优于 1 μs
0x5：时钟同步异常，时间准确度优于 10 μs
0x6：时钟同步异常，时间准确度优于 100 μs
0x7：时钟同步异常，时间准确度优于 1 ms
0x8：时钟同步异常，时间准确度优于 10 ms
0x9：时钟同步异常，时间准确度优于 100 ms
0xA：时钟同步异常，时间准确度优于 1 s
0xB：时钟同步异常，时间准确度优于 10 s
0xF：时钟严重故障，时间信息不可信赖 |
| 75 | 校验位 | 从“秒个位”至“时间质量”按位（数据位）进行奇校验的结果 |
| 76～78 | 保留 | 置“0” |
| 79 | P8 | 位置识别标志#8 |
| 80～88, | 90～97 | 一天中的秒数（SBS），二进制，低位在前 |
| 89 | P9 | 位置识别标志#9 |
| 98 | 索引位 | 置“0” |
| 99 | P0 | 位置识别标志#0 |
图 A.1 IRIG-B 码的波形图
参考文献

[1] 北斗卫星导航系统空间信号接口控制文件 公开服务信号（2.0 版），2013
[7] IEC 61108-2-1998：Maritime navigation and radio communication equipment and systems - Global navigation satellite systems (GNSS)—Part 2: Global navigation satellite system (GLONASS)—Receiver equipment - Performance standards, methods of testing and required test results
[8] IEC 61108-3-2010：Maritime navigation and radio communication equipment and systems - Global navigation satellite systems (GNSS)—Part 3: Galileo receiver equipment - Performance requirements, methods of testing and required test results
[9] IEC 61108-4-2005：Maritime navigation and radio communication equipment and systems—Global navigation satellite systems (GNSS)—Part 4: Ship borne DGPS and DGLONASS maritime radio beacon receiver equipment - Performance requirements, methods of testing and required test results