BeiDou Navigation Satellite System Signal In Space Interface Control Document

Precise Point Positioning Service Signal PPP-B2b

(Version 1.0)

China Satellite Navigation Office July, 2020

TABLE OF CONTENTS

1	Statement ····· 1											
2	Scope	Scope										
3	BDS	S Overview ······3										
	3.1	Space	Constellation ······ 3									
	3.2	Coord	linate System ······ 3									
	3.3	Time	System ······ 4									
4	Signa	l Chara	cteristics ······ 5									
	4.1	Signa	1 Structure ······5									
	4.2	Signa	l Modulation ······5									
	4.3	Logic	Levels ······ 6									
	4.4	Signa	l Polarization ······ 6									
	4.5	Carrie	er Phase Noise ······ 6									
	4.6	Spuri	ous ····· 6									
	4.7	Corre	lation Loss ·······6									
	4.8	Data/	Code Coherence ······6									
	4.9	Signa	l Coherence ······7									
	4.10	Rece	eived Power Levels on Ground									
5	Rang	ing Coo	le Characteristics ······ 8									
6	Navig	gation N	Message Structure ······ 10									
	6.1	Messa	age Format ······10									
		6.1.1	Brief Description 10									
		6.1.2	Cyclic Redundancy Check									
		6.1.3	Coding Methods and Coding Parameters11									
	6.2	Messa	age Content ······13									
		6.2.1	Message Type Description									
		6.2.2	Message Type 1 (Satellite Mask)15									

		6.2.3	Message Type 2 (Orbit Correction Parameters and User Range Accuracy
		Index)17
		6.2.4	Message Type 3 (Differential Code Bias Correction)20
		6.2.5	Message Type 4 (Clock Correction Parameters)
		6.2.6	Message Type 5 (User Range Accuracy Index) ······25
		6.2.7	Message Type 6 (Clock Correction and Orbit Correction - combination 1) 27
		6.2.8	Message Type 7 (Clock Correction and Orbit Correction - combination 2) 29
		6.2.9	Message Types 63 ····· 31
	6.3	Infor	mation Validity ······31
7	User	Algorit	hms ······ 32
	7.1	The T	Carget Systems for the PPP-B2b Service 32
	7.2	Time	and Space Coordinate System 32
	7.3	Diffe	rential Code Bias Correction32
	7.4	Orbit	Correction ······33
	7.5	Clock	c Correction ······34
	7.6	User	Range Accuracy Index (URAI) 34
	7.7	Syste	m Time Solution ······34
8	Abbı	reviation	ns ······ 35
Ar	nnex	Non-bi	nary LDPC Encoding and Decoding Methods

LIST OF FIGURES

Figure 5-1	Ranging code generator of the PPP-B2b_I ····· 8
Figure 6-1	The PPP-B2b_I navigation message frame structure
Figure 6-2	H _{81, 162} reading flow chart ·····13
Figure 6-3	Bit allocation of message type 1 ····· 15
Figure 6-4	Bit allocation of message type 2 ·····17
Figure 6-5	Bit allocation of message type 3 ·····20
Figure 6-6	Bit allocation of message type 4 ······23
Figure 6-7	Bit allocation of message type 5 ······25
Figure 6-8	Bit allocation of message type 6 ······27
Figure 6-9	Bit allocation of message type 7 ······29

LIST OF TABLES

Table 3-1	Parameters of the BDCS Reference Ellipsoid ······4
Table 4-1	Structure of the PPP-B2b signal
Table 4-2	Logic to signal level assignment ······ 6
Table 5-1	Ranging code parameters of the PPP-B2b_I9
Table 6-1	Defined message types
Table 6-2	Parameters of message type 1 15
Table 6-3	Parameters of message type 2 ····· 17
Table 6-4	Parameters of message type 3 ······ 20
Table 6-5	Definitions of signal and tracking modes
Table 6-6	Parameters of message type 4 ······ 23
Table 6-7	Correspondence of SubType1 and satellites in message type 4
Table 6-8	Parameters of message type 5 ····· 25
Table 6-9	Correspondence of SubType2 and satellites in message type 5

Table 6-10	Parameters of message type 6 ·····	27
Table 6-11	Parameters of message type 7 ·····	·30
Table 6-12	Nominal validity ······	31

1 Statement

China Satellite Navigation Office is responsible for the preparation, revision, distribution, and retention of the BeiDou Navigation Satellite System (BDS) Signal In Space Interface Control Documents (hereinafter referred to as SIS ICD), and reserves the rights for final interpretation of this document.

2 Scope

The construction and development of the BeiDou Navigation Satellite System is divided into three phases: BDS-1, BDS-2, and BDS-3 in sequence.

This document defines the characteristics of the BDS Precise Point Positioning (PPP) Service Signal PPP-B2b. Transmitted by the BDS-3 Geostationary Earth Orbit (GEO) satellites, the PPP-B2b signal serves as the data broadcasting channel for correction parameters, such as satellite precise orbit and clock offset parameters of BDS-3 and other Global Navigation Satellite Systems (GNSS), and provides PPP services for users in China and surrounding areas.

3 BDS Overview

3.1 Space Constellation

The nominal space constellation of BDS-3 consists of 3 GEO satellites, 3 IGSO satellites, and 24 MEO satellites. According to actual situation, spare satellites may be deployed in orbit. The GEO satellites operate in orbit at an altitude of 35,786 kilometers and are located at 80°E, 110.5°E, and 140°E respectively. The IGSO satellites operate in orbit at an altitude of 35,786 kilometers and an inclination of the orbital planes of 55 degrees with reference to the equatorial plane. The MEO satellites operate in orbit at an altitude of 21,528 kilometers and an inclination of the orbital planes with reference to the equatorial plane.

3.2 Coordinate System

BDS adopts the BeiDou Coordinate System (BDCS) whose definition complies with the standards of the International Earth Rotation and Reference System Service (IERS). The definition is also consistent with that of the China Geodetic Coordinate System 2000(CGCS2000). BDCS and CGCS2000 have the same reference ellipsoid parameters, which is defined as follows:

(1) Definition of origin, axis and scale

The origin is located at the Earth's center of mass. The Z-Axis is the direction of the IERS Reference Pole (IRP). The X-Axis is the intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-Axis. The Y-Axis, together with Z-Axis and X-Axis, constitutes a right-handed orthogonal coordinate system.

The length unit is the international system of units (SI) meter.

(2) Definition of the BDCS Reference Ellipsoid

The geometric center of the BDCS Reference Ellipsoid coincides with the Earth's center of mass, and the rotational axis of the BDCS Reference Ellipsoid is the Z-Axis. The parameters of the BDCS Reference Ellipsoid are shown in Table 3-1.

No.	Parameter	Definition				
1	Semi-major axis	a=6378137.0 m				
2	Geocentric gravitational constant	$\mu {=} 3.986004418 {\times} 10^{14} \text{m}^{3} {/} \text{s}^{2}$				
3	Flattening	f=1/298.257222101				
4	Earth's rotation rate	$\dot{\Omega}_{e} = 7.2921150 \times 10^{-5} \text{ rad/s}$				

 Table 3-1
 Parameters of the BDCS Reference Ellipsoid

3.3 Time System

The BeiDou Navigation Satellite System Time (BDT) is adopted by the BDS as time reference. BDT adopts the second of the international system of units (SI) as the base unit, and accumulates continuously without leap seconds. The start epoch of BDT is 00:00:00 on January 1, 2006 of Coordinated Universal Time (UTC). BDT connects with UTC via UTC (NTSC), and the deviation of BDT to UTC is maintained within 50 nanoseconds (modulo 1 second). The leap second information is broadcast in the navigation message.

4 Signal Characteristics

This chapter specifies the signal characteristics of the I-component of the PPP-B2b signal with a center frequency of 1207.14MHz and a bandwidth of 20.46MHz.

4.1 Signal Structure

PPP service information is broadcast on the open service signal PPP-B2b. The carrier frequency, modulation, and symbol rate of the PPP-B2b are shown in Table 4-1.The PPP-B2b signal broadcasts the I-component and the Q-component, and the first three BDS-3 GEO satellites only broadcast the I-component. This document only describes the characteristics of the PPP-B2b I-component (PPP-B2b I).

Signal	Component	Carrier frequency (MHz)	Modulation	Symbol rate (sps)	The first three GEOs	Subsequent GEOs
PPP-B2b	Ι	1207.14	BPSK(10)	1000	available	available
rrr-B20	Q	1207.14	TBD	TBD	N/A	available

Table 4-1 Structure of the PPP-B2b signal

4.2 Signal Modulation

The PPP-B2b_I signal $s_{B2b_I}(t)$ is generated by modulating the navigation message data $D_{B2b_I}(t)$ and the range code $C_{B2b_I}(t)$. The mathematical expression of $s_{B2b_I}(t)$ is as follows:

$$s_{\text{B2b}_{I}}(t) = \frac{1}{\sqrt{2}} D_{\text{B2b}_{I}}(t) \cdot C_{\text{B2b}_{I}}(t)$$
(4-1)

where $D_{B2b_I}(t)$ is as follows:

$$D_{\text{B2b}_{-}\text{I}}(t) = \sum_{k=-\infty}^{\infty} d_{\text{B2b}_{-}\text{I}}[k] p_{T_{\text{B2b}_{-}\text{I}}}(t - kT_{\text{B2b}_{-}\text{I}})$$
(4-2)

where $d_{\text{B2b}_{I}}$ is the navigation message data code; $T_{\text{B2b}_{I}}$ is the chip width of the corresponding data code; and $p_{T_{\text{B2b}_{I}}}(t)$ is a rectangle pulse with width of $T_{\text{B2b}_{I}}$.

The mathematical expression of range code $C_{B2b_{I}}$ is as follows:

$$C_{\text{B2b}_{I}}(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{N_{\text{B2b}_{I}}-1} c_{\text{B2b}_{I}}[k] p_{T_{c_{-\text{B2b}_{I}}}}\left(t - \left(N_{\text{B2b}_{I}}n + k\right)T_{c_{-\text{B2b}_{I}}}\right)$$
(4-3)

where $c_{B2b_{I}}$ is a PPP-B2b_I ranging code sequence (possible values are ± 1); $N_{B2b_{I}}$ is

the ranging code length with a value of 10230; $T_{c_B2b_I}=1/R_{c_B2b_I}$ is the PPP-B2b_I chip period of the ranging code, and $R_{c_B2b_I}=10.23$ Mbps is the PPP-B2b_I chipping rate; and $p_{T_{c_B2b_I}}(t)$ is a rectangle pulse with duration of $T_{c_B2b_I}$.

4.3 Logic Levels

The correspondence between the logic level code bits used to modulate the signal and the signal level is shown in Table 4-2.

Logic level	Signal level
1	-1.0
0	+1.0

Table 4-2 Logic to signal level assignment

4.4 Signal Polarization

The transmitted signals are Right-Hand Circularly Polarized (RHCP).

4.5 Carrier Phase Noise

The phase noise spectral density of the un-modulated carrier will allow a third-order phase locked loop with 10 Hz one-sided noise bandwidth to track the carrier to an accuracy of 0.1 radians(RMS).

4.6 Spurious

The transmitted spurious signal shall not exceed -50dBc.

4.7 Correlation Loss

The correlation loss due to satellite-transmitted signal distortions shall not exceed 0.6dB.

4.8 Data/Code Coherence

The edge of each data symbol shall be aligned with the edge of the corresponding ranging code chip. The start of the first chip of the periodic ranging codes shall be aligned with the start of a data symbol.

4.9 Signal Coherence

The time difference between the ranging code phases of all signal components shall not exceed 10 nanoseconds.

4.10 Received Power Levels on Ground

The minimum received power level of the PPP-B2b_I on ground is -160dBW. It is measured at the output of a 0 dBi RHCP user receiving antenna (or 3 dBi linearly polarized user receiving antenna) when the satellites are above a 5-degree elevation angle.

The PPP-B2b_I has the following characteristics: the off-axis relative power shall not decrease by more than 2dB from the edge of the Earth to nadir.

5 Ranging Code Characteristics

The PPP-B2b_I ranging code chip rate is 10.23 Mcps, and the code length is 10230 chips. Each ranging code is obtained by expanding the Gold code that is generated by the modulo-2 addition of the shifted output of the two 13-stage linear feedback shift registers. The generator polynomials for each PPP-B2b_I ranging code are

$$g_1(x) = 1 + x + x^9 + x^{10} + x^{13}$$

$$g_2(x) = 1 + x^3 + x^4 + x^6 + x^9 + x^{12} + x^{13}$$
(5-1)

The implementation of the PPP-B2b_I ranging code generators is shown in Figure 5-1.

Figure 5-1 Ranging code generator of the PPP-B2b_I

In a code generator, the initial bit values of register 1 are all "1" and the initial bit values of register 2 are given in Table 5-1, arranged as $[s_{2,1}, s_{2,2}, s_{2,3}, ..., s_{2,13}]$. At the start of each ranging code period, both register 1 and register 2 are simultaneously reset to their corresponding initial bit values. Furthermore, register 1 is reset at the end of the 8190th chip in each period of a ranging code. A ranging code with the length of 10230 chips is finally obtained by repeating the above procedure.

There are a total of 10 ranging codes for the PPP-B2b_I. The detailed parameters are shown in Table 5-1, in which, the values of both the first 24 chips and the last 24 chips are expressed in an octal form. The MSB (i.e., the first chip of the ranging codes) is transmitted first.

©	China	Satellite	Navigation	Office	2020
\sim	China	Suconne	1 tu i guilon	Onice	2020

Table 5-1 Ranging code parameters of the PPP-B2b_I									
PRN	Initial bit values of register 2 (binary)	The first 24 chips (octal)	The last 24 chips (octal)						
1	1 0 0 0 0 0 0 1 0 0 1 0 1	26773275	01362377						
2	100000110100	64773151	54270774						
3	1000010101101	22571523	41305112						
4	1000101001111	03270234	26377564						
5	$1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1$	25271603	71754171						
59	1111011111111	00100015	65447760						
60	111110110101	24402044	14703362						
61	111110111101	20402615	26526364						
62	0101110000101	27426631	23410705						
63	0101100111011	10625632	34572376						

able 5 1	Ranging cod	la noromatara	of the	DDD D2h	т
able 3-1	Ranging coc	le parameters	of the	PPP-B20	1

6 Navigation Message Structure

6.1 Message Format

6.1.1 Brief Description

The basic frame structure of the PPP-B2b_I navigation message is defined in Figure 6-1.

Figure 6-1 The PPP-B2b I navigation message frame structure

Each message has a length of 486 bits, wherein the highest 6 bits (MesType ID) indicate the message type, the lowest 24 bits are CRC, and the remaining 456 bits are the message data and its specific contents may vary depending on different message types.

After 64-ary LDPC(162, 81) encoding, the frame length shall be 972 symbols. These symbols will be concatenated together with 16 symbols of the preamble, 6 symbols of the PRN and 6 symbols of the reserved flags to form 1000 symbols in total. The front of the first symbol of each frame (i.e. the first symbol of the synchronization head) is aligned with the edge of whole second of the satellite time, and the broadcast time of each frame is 1 second, wherein:

The first 16 symbols of each frame is preamble (Pre) with the value of 0xEB90 in hexadecimal (i.e., 1110 1011 1001 0000 in binary). The MSB is transmitted first. The PRN in figure 6-1 is the PRN number of the GEO satellite that is broadcasting the message.

The reserved flags are only used to identify the status of the PPP service: the "1" in the highest bit of the reserved flags means the PPP service of this satellite is unavailable and the "0" in the highest bit of the reserved flags means the PPP service of this satellite is available.

Other symbols are reserved for future purposes. The status of the reserved flags rarely changes, so that users can minimize demodulation error by superimposing multiple frames of information.

6.1.2 Cyclic Redundancy Check

The CRC check is performed by bit for the 6 bits message type and the 456 bits message data. The generator polynomial of CRC is:

$$g(x) = x^{24} + x^{23} + x^{18} + x^{17} + x^{14} + x^{11} + x^{10} + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1$$
(6-1)

6.1.3 Coding Methods and Coding Parameters

Each frame of the PPP-B2b_I navigation message before error correction encoding has a length of 486 bits, containing Message Type (Mestype, 6 bits), message data (456 bits), and CRC check bits (24 bits). The encoding scheme adopts 64-ary LDPC(162, 81). Each codeword symbol is composed of 6 bits and defined in GF(2⁶) domain with a primitive polynomial of $p(x)=1+x+x^6$. A vector representation (MSB first) is used to describe the mapping relationship between non-binary symbols and binary bits. The message length k is equal to 81 code word symbols, i.e., 486 bits. The check matrix is a sparse matrix **H**_{81,162} of 81 rows and 162 columns defined in GF(2⁶) domain with the primitive polynomial of $p(x)=1+x+x^6$, of which the first 81×81 part corresponds to the information symbols and the last 81×81 part corresponds to the check symbols. The locations of its non-zero elements are defined as follows:

H_{81,162,index}=[

			-												
19	67	109	130	27	71	85	161	31	78	96	122	2	44	83	125
26	71	104	132	30	39	93	154	4	46	85	127	21	62	111	127
13	42	101	146	18	66	108	129	27	72	100	153	29	70	84	160
23	61	113	126	8	50	89	131	34	74	111	157	12	44	100	145
22	60	112	128	0	49	115	151	6	47	106	144	33	53	82	140
3	45	84	126	38	80	109	147	9	60	96	141	1	43	82	124
20	77	88	158	37	54	122	159	3	65	104	149	5	47	86	128
0	42	81	123	32	79	97	120	35	72	112	158	15	57	93	138
22	75	107	143	24	69	102	133	1	50	116	152	24	57	119	135
17	59	95	140	7	45	107	145	34	51	83	138	14	43	99	144
21	77	106	142	16	58	94	139	20	68	110	131	2	48	114	150
10	52	91	133	25	70	103	134	32	41	95	153	14	56	91	137
33	73	113	156	28	73	101	154	4	63	102	147	6	48	87	129
8	46	105	146	30	80	98	121	41	68	119	150	35	52	81	139

16	63	114	124	13	55	90	136	31	40	94	155	10	61	97	142
36	56	121	161	29	74	99	155	5	64	103	148	18	75	89	156
36	78	110	148	19	76	87	157	15	65	116	123	11	53	92	134
25	58	117	136	39	66	117	151	11	62	98	143	9	51	90	132
38	55	120	160	7	49	88	130	17	64	115	125				
28	69	86	159	23	76	105	141	12	54	92	135				
40	67	118	152	37	79	108	149	26	59	118	137				

],

where each element is a non-binary symbol in $GF(2^6)$ domain. The elements are described by a vector representation as follows:

]	H _{81,162}	,element ⁼	=[
46	45	44	15	15	24	50	37	24	50	37	15	15	32	18	61
58	56	60	62	37	53	61	29	46	58	18	6	36	19	3	57
54	7	38	23	51	59	63	47	9	3	43	29	56	8	46	13
26	22	14	2	63	26	41	12	17	32	58	37	38	23	55	22
35	1	31	44	44	51	35	13	30	1	44	7	27	5	2	62
16	63	20	9	27	56	8	43	1	44	30	24	5	26	27	37
42	47	37	32	38	12	25	51	43	34	48	57	39	9	30	48
63	13	54	10	2	46	56	35	47	20	33	26	62	54	56	60
1	21	25	7	43	58	19	49	28	4	52	44	46	44	14	15
41	48	2	27	49	21	7	35	40	21	44	17	24	23	45	11
46	25	22	48	13	29	53	61	52	17	24	61	29	41	10	16
60	24	4	50	32	49	58	19	43	34	48	57	29	7	10	16
25	11	7	1	32	49	58	19	42	14	24	33	39	56	30	48
13	27	56	8	53	40	61	18	8	43	27	56	18	40	32	61
60	48	2	27	50	54	60	62	58	19	32	49	9	3	63	43
53	35	16	13	23	25	30	16	18	6	61	21	15	1	42	45
20	16	63	9	27	37	5	26	29	7	10	16	11	60	6	49
43	47	18	20	42	14	24	33	43	22	41	20	22	15	12	33
9	41	57	58	5	31	51	30	9	3	63	43				
37	53	61	29	6	45	56	19	33	45	36	34				
19	24	42	14	1	45	15	6	8	43	27	56				

].

The above matrix shall be read in a top-down process, and in a left-to-right order between columns. In the same column, the four numbers of each row correspond to four non-zero elements in the matrix. The reading rules for $H_{81,162}$ are shown in Figure 6-2.

Figure 6-2 $H_{81, 162}$ reading flow chart

See Annex for more information about the encoding and decoding methods.

6.2 Message Content

6.2.1 Message Type Description

6.2.1.1 Message Type Definition

The message type is used to distinguish the information contents broadcast in the valid data field. The defined message types are shown in Table 6-1, and others are reserved.

Message types (in decimal)	Information content
1	Satellite mask
2	Satellite orbit correction and user range accuracy index
3	Differential code bias
4	Satellite clock correction

Table 6-1Defined message types

Message types (in decimal)	Information content
5	User range accuracy index
6	Clock correction and orbit correction - combination 1
7	Clock correction and orbit correction - combination 2
8-62	Reserved
63	Null message

6.2.1.2 Message Type Inter-Relationship

To ensure the inter-relationship among the information contents of different message types, the information is identified with a group of IOD. These IODs include:

1) IOD SSR: This IOD indicates the issue number of the State Space Representation (SSR) data. This field is included in all currently defined message types. If the IOD SSR in different message types is the same, the corresponding data can be used together; if the IOD SSR is different, the corresponding data cannot be used. In general, IOD SSR shall be updated only when the system configuration changes.

2) IODP: This IOD indicates the issue number of the satellite mask. IODP is broadcast in message type 1, message type 4, message type 5, and message type 6. Users can use this field to decide whether the data in the above-mentioned message types are matched.

3) IODN: This IOD indicates the issue number of satellite clock and ephemeris broadcast by the downlink signals of GNSS. It is included in message type 2. Users can use IODN to judge whether the ephemeris and clock parameters of the broadcast navigation message match with the orbit correction in message types 2, 6 and 7. Another IOD, known as IOD Corr, is also included in message types 2, 6 and 7 simultaneously, which is used to associate with the clock correction in message types 4, 6 and 7. Users can use IODN and IOD Corr to decide whether clock correction parameters of the broadcast navigation message match with the clock correction in message types 4, 6 and 7.

4) IOD Corr: This IOD identifies the issue number of the orbit correction and the clock correction. It is included in message types 2, 4, 6 and 7. For the same satellite, when the IOD Corr of the clock correction is same as that of the orbit correction, the two are matched. (Note: the IOD Corr is not in a one-to-one correspondence with the parameter contents. When the

clock correction or orbital correction changes, the IOD Corr may not change. When the IOD Corr of multiple groups of parameters is identical, the user should use the latest parameters available.)

6.2.2 Message Type 1 (Satellite Mask)

6.2.2.1 Message Layout

The format of message type 1 is shown in Figure 6-3.

Message type 1 Satellite mask

Figure 6-3 Bit allocation of message type 1

6.2.2.2 Content Description

Message type 1 is satellite mask information. The mask contains 255 ID positions, each of which occupies one bit. The "1" in a bit means the differential information of the corresponding satellite is broadcast; the "0" in a bit means the differential information of the corresponding satellite is not broadcast. The unassigned (reserved mask) ID bit should be set to "0". The satellite mask assignment and other information contents of the message type 1 are described in Table 6-2.

Table 6-2Parameters of message type 1	Table 6-2	Parameters	of message	type 1
---------------------------------------	-----------	------------	------------	--------

Field	Name	Length (bit)	Scale factor	Range	Unit	Basic description
MesTypeID	Message type	6	1	0~63		See Table 6-1
Epoch	Epoch	17	1	0~86399	S	BDT seconds within a day
Reserved	Reserved	4	1	0~15		
IOD SSR	IOD of SSR	2	1	0~3		Change as the system configuration changes.
IODP	IOD of PRN	4	1	0~15		Issue Of Data of PRN

0.01.	G + 11.	ът • .•	0.00	2020
© China	Satellite	Navigation	Office	2020

Field	Name	Length (bit)	Scale factor	Range	Unit	Basic description
	mask					mask
	C-4-11:41-4-1	1	1	0 - 1		Broadcasting ID of the
BDS mask	Satellite slot 1	1	1	0~1		first satellite of BDS
DD5 mask	to slot 63	1	1	0~1		Broadcasting ID of the
	10 \$101 05	1	1	0,~1		63 rd satellite of BDS
	Satellite slot	1	1	0~1		Broadcasting ID of the
GPS mask	64	1	1	0 1		first satellite of GPS
OI 5 mask	to slot 100	1	1	0~1		Broadcasting ID of the
	10 3101 100	1	1	0 1		37 th satellite of GPS
	Satellite slot	1	1	$0 \sim 1$		Broadcasting ID of the
Galileo mask	101	1	-	0 1		first satellite of Galileo
Guineo musk	to slot137	1	1	$0 \sim 1$		Broadcasting ID of the
	10 5101157	1	-	· · ·		37 th satellite of Galileo
	Satellite slot	1	1			Broadcasting ID of the
	138			0~1		first satellite of
GLONASS						GLONASS
mask						Broadcasting ID of the
	to slot 174	1	1	$0 \sim 1$		37 th satellite of
						GLONASS
Reserved	Satellite slot	1	1	0~1		Reserved
	175	1	1	0 - 1		inesei veu
mask	to slot 255	1	1	0~1		Reserved
Reserved bits	Reserved bits	174	1			
CRC	CRC bits	24				

The above information is described as follows:

1) Epoch

It identifies the epoch corresponding to the observation data used to calculate differential message, expressed in seconds within one BDT day. Unless specified elsewhere, the data at the latest epoch should be selected to use for all types of data.

2) IOD SSR

Changes of IOD SSR indicate that the data generation configuration has changed. Different types of data can be used together only when they have same IOD SSR.

3) IODP

IODP represents the IOD of PRN mask. If the mask content changes, the IODP will change accordingly in a sequential cycle of 0, 1, 2, 3, ..., 14, 15, and 0. IODP is also included

in message type 4, 5 and 6 to identify the corresponding relationship between the data and the mask. When it is consistent with the IODP parameter of message type 1, it means they are the same set of data.

When the IODP parameter in message type 1 is inconsistent with that in message type 4, 5 and 6, users should not use message type 1 until the IODP of all involved types are consistent.

During the period while IODP parameter is changing, users should use the old mask until the IODP in other types is updated to the same value. When it is detected that the IODP in other message types has changed first, users should not use these message types until they receive a new mask.

6.2.3 Message Type 2 (Orbit Correction Parameters and User Range Accuracy Index)

6.2.3.1 Message Layout

The format of message type 2 is shown in Figure 6-4.

Message type 2 Satellite orbit correction

Figure 6-4 Bit allocation of message type 2

6.2.3.2 Content Description

Message type 2 broadcasts the orbit correction parameters of the satellite. Its information contents are described in Table 6-3.

Field	Name	Length (bit)	Scale factor	Range	Unit	Description
MesType ID	Message type	6	1	0~63		See Table 6-1
Epoch	Epoch	17	1	0~86399	s	BDT seconds within a day

Table 6-3Parameters of message type 2

Field]	Name	Length (bit)	Scale factor	Range	Unit	Description
Reserved	R	eserved	4	1	0~15		
IOD SSR	IOI	D of SSR	2	1	0~3		Change as the system configuration changes.
	S	at Slot	9	1	1~255		Position ID of the mask
]	IODN	10	1			IOD of the broadcast navigation message
Orbit	IC	DD Corr	3	1	0~7		IOD of the correction
correction parameters of	Radia	l correction	15*	0.0016	±26.2128	m	Radial orbit correction
satellite 1	Along-track correction		13*	0.0064	±26.208	m	Along orbit correction
	Cross-track correction		13*	0.0064	±26.208	m	Cross orbit correction
		URA _{CLASS}	3	1	0~7		User Range
	URAI	URA _{VALUE}	3	1	0~7		Accuracy Index of this satellite
Orbit correction parameters of satellite 2			69				The orbit correction parameters of the 2 nd satellite of this type
Orbit correction parameters of satellite 6			69				The orbit correction parameters of the 6 th satellite of this type
Rev			19				
CRC	C	RC bits	24				
*Note: Represent			de.	1	1	1	1

Please refer to message type 1 for the definitions of "Epoch", "SSR update interval" and "IOD SSR" in Table 6-3. Other parameters are described as follows.

Message type 2 broadcasts the orbit correction parameters of 6 satellites. The orbit correction parameters of each satellite include Sat Slot, IODN, IOD Corr, radial correction, along correction, and cross correction. User Range Accuracy Index is broadcast simultaneously.

1) Sat Slot

Sat Slot indicates the location of the satellite in the mask. The starting value is 1 and the effective range is 1~255;

2) IODN

IODN is used for the IOD corresponding to the orbit and clock correction parameters in GNSS. If the IODN broadcast by PPP-B2b does not match the IOD broadcast by GNSS, it means that the GNSS has updated its navigation message. Users should continue to use the previous navigation message until the IODN in PPP-B2b signals gets updated and matches the IOD from GNSS.

The correspondence relationship between IODN and the broadcast navigation message information of GNSS are as follows:

(1) BDS: corresponding to the IODC in CNAV1 message;

(2) GPS: corresponding to the IODC in LNAV message;

(3) Galileo: corresponding to IOD Nav in I/NAV message;

(4) GLONASS: corresponding to Tb in L1OCd message.

3) IOD Corr

Please see the description of message type 4 for the definition and usage of IOD Corr.

4) Radial, along and cross correction

See section 7.4 for algorithms.

5) User Range Accuracy Index (URAI)

The URAI parameter of a satellite has 6 bits in total. The highest 3 bits are defined as user range accuracy class (URA_{CLASS}), and the lowest 3 bits are defined as user range accuracy value (URA_{VALUE}). The formula for calculating URA is:

$$\text{URA}[\text{mm}] \le 3^{\text{URA}_{\text{CLASS}}} \left(1 + 0.25 \times \text{URA}_{\text{VALUE}}\right) - 1 \tag{6-2}$$

where URA is the user range accuracy in mm;

When URAI = 000000(binary), it means that URA is undefined or unknown, and the

corresponding satellite correction is not reliable.

When URAI = 111111(binary), it means that URA > 5466.5 mm.

6.2.4 Message Type 3 (Differential Code Bias Correction)

6.2.4.1 Message Layout

The format of message type 1 is shown in Figure 6-5.

Message type 3 Differential code bias corrections

Figure 6-5 Bit allocation of message type 3

6.2.4.2 Content Description

The contents of message type 3 are described in Table 6-4.

Field	Name	Length (bit)	Scale factor	Range	Unit	Description
MesTypeID	Message type	6	1	0~63		See Table 6-1
Epoch	Epoch	17	1	0~86399	S	BDT seconds within a day
Reserved	Reserved	4	1	0~15		
IOD SSR	IOD of SSR	2	1	0~3		Change as the system configuration changes.
Number of satellite(s)	Number of satellite(s)	5	1	0~31		Number of the satellite contained in this message
Differential code bias of	Sat Slot	9	1	1~255		The slot location of satellite 1

Table 6-4Parameters of message type 3

Field	Name	Length (bit)	Scale factor	Range	Unit	Description
satellite 1	Number of differential code bias(es)	4	1			Number of differential code bias(es) contained in satellite 1
	Signal and tracking mode 1	4	1	0~15		The signal component and processing mode of the 1 st differential code bias value
	Differential code bias 1	12*	0.017	±35.746	m	The 1 st differential code bias value
	Signal and tracking mode 2	4	1	0~15		The signal component and processing mode of the 2 nd differential code bias value
	Differential code bias 2	12*	0.017	±35.746	m	The 2 nd differential code bias value
CRC	CRC bits	24				
*Note: Represen	nts a binary complet	ment code.				

© China Satellite Navigation Office 2020

Please refer to message type 1 for the definitions of "Epoch", "SSR update interval" and "IOD SSR" and message type 2 for the definition of "Sat Slot" in Table 6-4. Other parameters are described as follows.

Message type 3 broadcasts the differential code bias correction parameters of the signal components of the satellites involved. The number of satellites contained in each message and the number of differential code bias of each satellite are variable. Users should analyze dynamically according to the "number of satellites" and the "number of differential code bias(es)" of each satellite.

The "signal and tracking mode" indicates the signal component corresponding to the differential code bias and the signal-receiving mode of that component. See Table 6-5 for specific definitions.

ID of signal and tracking mode	BDS	GPS	GLONASS	Galileo
0	B1I	L1 C/A	G1 C/A	Reserved
1	B1C(D)	L1 P	G1 P	E1 B
2	B1C(P)	Reserved	G2 C/A	E1 C
3	Reserved	Reserved	Reserved	Reserved
4	B2a(D)	L1C(P)	Reserved	E5a Q
5	B2a(P)	L1C(D+P)	Reserved	E5a I
6	Reserved	Reserved	Reserved	Reserved
7	B2b-I	L2C(L)	Reserved	E5b I
8	B2b-Q	L2C(M+L)	Reserved	E5b Q
9	Reserved	Reserved	Reserved	Reserved
10	Reserved	Reserved	Reserved	Reserved
11	Reserved	L5 I	Reserved	E6 C
12	B3 I	L5 Q	Reserved	Reserved
13	Reserved	L5 I+Q	Reserved	Reserved
14	Reserved	Reserved	Reserved	Reserved
15	Reserved	Reserved	Reserved	Reserved

 Table 6-5
 Definitions of signal and tracking modes

The "differential code bias" in this message type is the pseudo-range code biases between the ranging signal and the clock offset reference signal adopted by the corresponding system. Users need to correct the differential code bias accordingly when they are using the signals other than the reference signal, otherwise the convergence time of precise point positioning may be affected. Please refer to section 7.3 for the user algorithms of differential code bias corrections.

6.2.5 Message Type 4 (Clock Correction Parameters)

6.2.5.1 Message Layout

Message type 4 is used to broadcast clock correction and its message format is shown in Figure 6-6.

Message type 4 Satellite clock correction

Figure 6-6 Bit allocation of message type 4

6.2.5.2 Content Description

The parameters of message type 4 are described in Table 6-6.

Table 6-6 Parameters of message type 4									
Field	Name	Length (bit)	Scale factor	Range	Unit	Description			
MesTypeID	Message type	. ,	1	0~63		See Table 6-1			
Epoch	Epoch	17	1	0~86399	S	BDT seconds within a day			
Reserved	Reserved	4	1	0~15					
IOD SSR	IOD of SSR	2	1	0~3		Change as the system configuration changes.			
IODP	IOD of PRN mask	4	1	0~15		Issue Of Data of PRN mask			
SubType1	Subtype ID 1	5	1	0~31		Indicates the corresponding relationship between the satellite and the mask.			
Clock offset	IOD Corr	3	1	0~7		Issue Of Data correction			
correction of satellite 1	C ₀	15*	0.0016	±26.2128	m	Invalid if the value exceeds the effective range.			
Clock correction of satellite 2		18				The clock correction of the 2 nd satellite of this type.			
Clock correction of satellite 3		18				The clock correction of the 3 rd satellite of this type.			
		18							
Clock correction of satellite 23		18				The clock correction of the 23 rd satellite of this type.			

 Table 6-6
 Parameters of message type 4

Field	Name	Length (bit)	Scale factor	Range	Unit	Description
Rev	Reserved	10				Reserved bits
CRC	CRC bits	24				
*Note: Represents a	binary comple	ement code	e.			

Please refer to message type 1 for the definitions of "Epoch ", "SSR update interval", "IOD SSR" and "IODP" in Table 6-6. Other parameters are described as follows.

In message type 4, Users use the message type, mask (broadcast in message type 1), and subtype (SubType1) to determine the satellite corresponding to the clock correction: all satellites whose masks are set to 1 are compressed in order of their slot locations in the mask. See Table 6-7 for the correspondence of SubType1 and satellites.

SubType1	Corresponding satellites
0	The $1^{st} \sim 23^{rd}$ of the satellites whose masks are set to "1".
1	The $24^{\text{th}} \sim 46^{\text{th}}$ of the satellites whose masks are set to "1".
2	The $47^{\text{th}} \sim 69^{\text{th}}$ of the satellites whose masks are set to "1".
3	The $70^{\text{th}} \sim 92^{\text{nd}}$ of the satellites whose masks are set to "1".
4	The $93^{rd} \sim 115^{th}$ of the satellites whose masks are set to "1".
5	The $116^{\text{th}} \sim 138^{\text{th}}$ of the satellites whose masks are set to "1".
6	The $139^{\text{th}} \sim 161^{\text{st}}$ of the satellites whose masks are set to "1".
7	The $162^{nd} \sim 184^{th}$ of the satellites whose masks are set to "1".
8	The $185^{\text{th}} \sim 207^{\text{th}}$ of the satellites whose masks are set to "1".
9	The $208^{\text{th}} \sim 230^{\text{th}}$ of the satellites whose masks are set to "1".
10	The $231^{st} \sim 253^{rd}$ of the satellites whose masks are set to "1".
11	The $254^{\text{th}} \sim 255^{\text{th}}$ of the satellites whose masks are set to "1".
Other values	Reserved

Table 6-7 Correspondence of SubType1 and satellites in message type 4

According to the actual number of satellites, the system only broadcasts the necessary message types. For example, if there are 30 satellites whose masks are set to 1, only the information subtypes 0 and 1 will be broadcast and other types will not be broadcast. (Note: In such a case, the subtype 0 of message type 4 can also be broadcast together with message type 6. Please refer to the description of message type 6 for more details.)

The clock correction parameters of each satellite include IOD Corr and C₀.

IOD Corr is the IOD correction, which is also broadcast in message type 2. For the correction of the same satellite, the IOD Corr in message type 2 and that in message type 4 is identical, which means that C_0 matches the orbit correction (broadcast in message type 2) and C_0 matches the IODN in the orbit correction (see the description of message type 2), so that the orbit and clock correction can be used in combination. If the IOD Corr of message type 2 and 4 are not identical, the C_0 and orbital corrections cannot be used in a consistent way.

 C_0 is the clock correction of 15 bits binary complement with a quantization unit of 0.0016 m, and the effective range is ±26.2128 m. See section 7.5 for user algorithms.

6.2.6 Message Type 5 (User Range Accuracy Index)

6.2.6.1 Message Layout

Message type 5 broadcasts user range accuracy index. Its message format is shown in Figure 6-7.

Message type 5 User range accuracy

•		——— Dire	ection of dat - 48	a flow — 66bits	— MSB	first <	 		
MesTypeID 6bits	Epoch 17bits	Rev 4bits	IOD SSR 2bits	IODP 4bits	SubType2 3bits	URAI (satellite 1) 6bits	 URAI (satellite 70) 6bits	Rev 6bits	CRC 24bits

Figure 6-7 Bit allocation of message type 5

6.2.6.2 Content Description

The parameters of message type 5 are described in Table 6-8.

Field	Name	NameLengthScale(bit)factor		Range	Unit	Description
MesTypeID	Message type	6	1	0~63		See Table 6-1
Epoch	Epoch	17	1	0~86399	S	BDT seconds within a day
Reserved	Reserved	4	1	0~15		
IOD SSR	IOD of SSR	2	1	0~3		Change as the system configuration changes.
IODP	IOD of PRN mask	4	1	0~15		Issue Of Data of PRN mask
SubType2	Subtype 2	3	1	0~7		Identify satellite ID.

Table 6-8Parameters of message type 5

Field	Name	Length (bit)	Scale factor	Range	Unit	Description
URAI (Satellite 1)	URA _{CLASS}	3	1	0~7		User range accuracy index of the 1 st satellite
	URA _{VALUE}	3	1	0~7		in this type
URAI (Satellite 2)		6	1			User range accuracy index of the 2 nd satellite in this type
URAI (Satellite 70)		6	1			User range accuracy index of the 70 th satellite in this type
Rev	Reserved	6				Reserved bits
CRC	CRC bits	24				

Please refer to message type 1 for the definitions of "Epoch", "SSR update interval", "IOD SSR" and "IODP" in Table 6-8. Other parameters are described as follows.

In message type 5, users use the message type, mask (broadcast in message type 1), and subtype (SubType2) to determine the satellite corresponding to the range accuracy: all satellites whose masks are set to 1 are arranged after compression in order of their slot locations in the mask. See Table 6-9 for the correspondence of SubType2 and satellites.

SubType2	Corresponding satellite
0	The 1 st $\sim 70^{\text{th}}$ of the satellites whose masks are set to "1".
1	The 71 st $\sim 140^{\text{th}}$ of the satellites whose masks are set to "1".
2	The 141 st $\sim 210^{ ext{th}}$ of the satellites whose masks are set to "1".
3	The 211 th $\sim 255^{th}$ of the satellites whose masks are set to "1".
Other values	Reserved

Table 6-9 Correspondence of SubType2 and satellites in message type 5

According to the actual number of the satellites, the system only broadcasts the necessary message types. For example, if there are 32 satellites whose masks are set to 1, only the subtype 0 will be broadcast and other types will not be broadcast. Please refer to the description of message type 2 for the definition of "URAI".

6.2.7 Message Type 6 (Clock Correction and Orbit Correction - combination 1)

6.2.7.1 Message Layout

Message type 6 is used to broadcast the clock correction and orbit correction parameters in combination. The message format of Message type 6 is shown in Figure 6-8.

Message type 6 Satellite clock and orbit corrections-combination 1

Figure 6-8 Bit allocation of message type 6

6.2.7.2 Content Description

The parameters of message type 6 are described in Table 6-10.

Field	Name	Length (bit)	Scale factor	Range	Unit	Description
MesTypeID	Message type	6	1	0~63		See Table 6-1
	Number of					
NumC	satellites with	5	1	0~22		
	clock corrections					
	Number of					
NumO	satellites with	3	1	0~6		
	orbit corrections					
	Epoch of clock	17	1	0~,86200	q	BDT seconds within a
	corrections	1 /	1	0~86399	S	day
Content of doals	Reserved	4	1	0~15		
Content of clock		2	1	0 - 2		Change as the system
corrections	IOD SSR	2	1	0~3		configuration changes.
	IODP	4	1	0~15		IOD of PRN mask
	Slot_S	9	1	0~255		The location of the 1 st

Table 6-10Parameters of message type 6

© Cl	nina Sat	ellite Na	vigation	Office	2020
------	----------	-----------	----------	--------	------

Field	Name	Length (bit)	Scale factor	Range	Unit	Description
						satellite in the
						sequence of satellites
						whose masks are set to "1"
	Clock					The clock correction
	corrections for	18	1			for the 1 st satellite in
	satellite 1					this type
	Clock					The clock correction
	corrections for	18	1			for the NumC-th
	satellite NumC					satellite in this type
	Epoch of orbit	17	1	0~86399	S	BDT seconds within a
	corrections	17	-		5	day
	Reserved	4	1	0~15		
	IOD SSR	2	1	0~3		Change as the system
		2	-			configuration changes.
Content of orbit	Orbit correction					The orbit correction
correction	for satellite 1	69	1			for the 1 st satellite in
						this type
	Orbit correction					The orbit correction
	for satellite	69	1			for the NumO-th
	NumO					satellite in this type
CRC	CRC bits	24				

Please refer to message type 1 for the definitions of "Epoch", "SSR update interval", "IOD SSR" and "IODP" in Table 6-10. Other parameters are described as follows.

NumC is the number of satellites corresponding to the satellite clock correction in this type, with an effective range of $0 \sim 22$. NumC can be used to determine the bit length occupied by the satellite clock correction: when NumC = 0, the number of bits occupied by the clock correction is 0; when NumC > 0, the number of bits occupied by the clock correction is $36+NumC\times18$.

NumO is the number of satellites corresponding to the satellite orbit correction in this type, with an effective range of $0\sim 6$. NumO can be used to determine the bit length occupied

by the satellite orbit correction: when NumO = 0, the number of bits occupied by the orbit correction is 0; when NumO > 0, the number of bits occupied by the orbit correction is 23+ NumO×69.

Slot_S indicates the slot location of the first satellite with clock corrections in this type in the sequence of all satellites whose masks are set to "1". The satellites with clock corrections broadcast in message type 6 are the satellites numbered from Slot_S to Slot_S+NumC-1 in the sequence of all satellites whose masks are set to "1". For example, assuming there are 48 satellites whose masks are set to "1", the clock corrections of the 1st to the 46th satellites will be broadcast in message type 4, and the 47th and 48th satellites will be broadcast in message type 6. Then the Slot_S in the message type 6 should be 47, and the NumC should be 2.

The 18 bits clock correction of each satellite includes 3 bits IOD Corr and 15 bits C0; please refer to message type 4 for details. For the format and the definition of 69 bits orbit correction parameters of each satellite, see the contents of message type 2.

6.2.8 Message Type 7 (Clock Correction and Orbit Correction - combination 2)

6.2.8.1 Message Layout

Message type 7 is used to broadcast the clock correction and orbit correction in combination. It differs from message type 6 in that the correspondence between the satellite clock correction and the satellite is through Sat Slot instead of mask.

The message format of Message type 7 is shown in Figure 6-9.

Message type 7 Satellite clock and orbit corrections-combination 2

6.2.8.2 Content Description

The parameters of message type 7 are described in Table 6-11.

		Table	Length	Scale	i message typ		
Field	Nai	ne	(bit)	factor	Range	Unit	Description
MesTypeID	Message type		6	1	0~63		See Table 6-1
	Number of		5				
NumC		of clock correction		1	0~15		
	Number of						
NumO	of orbit co	orrection	3	1	0~6		
	Epoch o	f clock	17	1	0 0(200		BDT seconds within a
	correc	ction	17	1	0~86399	S	day
	Rese	rved	4	1	0~15		
	IOD	SCD	2	1	0~3		Change as the system
			2	1	0, -3		configuration changes.
Content of	The clock	Sat Slot	9	1			The clock correction of
clock	correction	IOD	3				the 1^{st} satellite in this
correction	of	Corr					type
	satellite 1	C_{0}	15				
	The clock	correction					The clock correction of
	of satellit		27	1			the NumC-th satellite in
							this type
	Epoch o		17	1	0~86399	s	BDT seconds within a
	correc						day
	Reser	rved	4	1	0~15		
	IOD	SSR	2	1	0~3		Change as the system
Content of				_			configuration changes.
orbit	Orbit corr	ection of					The orbit correction of
correction	satell		69	1			the 1 st satellite in this
							type
		••					
	Orbit corr	ection of					The orbit correction of
	satellite		69	1			the NumO-th satellite
							in this type
CRC	CRC	bits	24				

Table 6-11	Parameters of message type 7
Please refer to message type 1 for the definitions of "Epoch ", "SSR update interval", "IOD SSR" and "IODP" in Table 6-11. Other parameters are described as follows.

NumC is the number of satellites corresponding to the satellite clock correction in this type. NumC can be used to determine the bit length occupied by the satellite clock correction: when NumC = 0, the number of bits occupied by the clock correction is 0; when NumC > 0, the number of bits occupied by the clock correction is 23+NumC×27.

NumO is the number of satellites corresponding to the satellite orbit correction in this type, with an effective range of $0 \sim 6$. NumO can be used to determine the bit length occupied by the satellite orbit correction: when NumO = 0, the number of bits occupied by the orbit correction is 0; when NumO > 0, the number of bits occupied by the orbit correction is 23+ NumO×69.

The 27 bits clock correction of each satellite includes 9 bits Sat Slot, 3 bits IOD Corr and 15 bits C0. Sat Slot indicates the position of the satellite in the mask. IOD Corr and C0 are referred to message type 4. For the format and definition of the 69 bits orbit correction parameters of each satellite, see the contents of message type 2.

6.2.9 Message Types 63

Message type 63 is null message. When broadcast information is unavailable, it is used for blank filling.

6.3 Information Validity

The nominal validities of various kinds of information in the PPP-B2b_I are listed in Table 6-12.

Information content	Message type	Nominal validity(s)*							
Satellite mask	1								
Orbit correction	2,6,7	96							
Differential code bias	3	86400							
Clock correction	4,6,7	12							
User range accuracy index	2,5,6,7	96							
*Note: "Nominal validity " gives the time range suggestion, the messages which out of the range cannot									
ensure the data quality.									

7 User Algorithms

7.1 The Target Systems for the PPP-B2b Service

The PPP-B2b signal is designed to provide PPP service for GNSS and their combinations. For each satellite navigation system, the reference broadcast navigation messages corresponding to various corrections are:

1) BDS: PPP-B2b information is used to correct the CNAV1 navigation messages of B1C signal.

2) GPS: PPP-B2b information is used to correct the LNAV navigation messages.

3) Galileo: PPP-B2b information is used to correct the I/NAV navigation messages.

4) GLONASS: PPP-B2b information is used to correct the L1OCd navigation messages.

7.2 Time and Space Coordinate System

The PPP-B2b signal and PPP services information use BDT, and the coordinate system is BDCS. See Chapter 3 for details.

7.3 Differential Code Bias Correction

Due to different satellite tracking modes, each observed value has an offset related to the signal tracking mode. During the synchronous processing of signals at different frequencies, the first step is to eliminate such DCB correction to realize the synchronous processing. The correction algorithm formula is shown in (7-1):

$$\tilde{l}_{sig} = l_{sig} - DCB_{sig} \tag{7-1}$$

Where:

 l_{sig} —— The observed value of sig signal after correction;

 l_{sig} — The observed value of *sig* signal directly captured by signal receiver;

 DCB_{sig} —— The differential code bias corresponding to the signal.

For example:

If the range signal are B1Cp and B2ap at the user end for BDS, the differential code bias of the B1Cp signal broadcast in PPP-B2b message is DCB_{B1Cp} , and the differential code bias of B2ap signal is DCB_{B2ap} , the corresponding differential code bias correction are as follows:

$$\tilde{l}_{B1Cp} = l_{B1Cp} - DCB_{B1Cp} \tag{7-2}$$

$$\tilde{l}_{B2ap} = l_{B2ap} - DCB_{B2ap} \tag{7-3}$$

The observed values of dual-frequency ionosphere-free combination are:

$$\tilde{l}_{lF} = \frac{\gamma \tilde{l}_{B1Cp} - \tilde{l}_{B2ap}}{\gamma - 1} = \frac{\gamma l_{B1Cp} - l_{B2ap}}{\gamma - 1} - \frac{\gamma DCB_{B1Cp} - DCB_{B2ap}}{\gamma - 1}$$
(7-4)

Where $\gamma = \frac{f_{B1Cp}}{f_{P2nm}^2}$; f_{B1Cp} is the center frequency of B1Cp carrier; and f_{B2ap} is the center frequency of B2ap carrier.

7.4 Orbit Correction

The parameters included in the orbit correction information are the components of the orbit correction vector δO in radial, along, and cross directions. The orbit correction value is used to calculate the satellite position correction vector δX and in combination with the satellite position vector $X_{broadcast}$ calculated by broadcast ephemeris. The corrected calculation formula is as follows:

$$X_{orbit} = X_{broadcast} - \delta X \tag{7-5}$$

Where:

 X_{orbit} — The satellite position corrected by the orbit correction message;

 $X_{broadcast}$ — The satellite position calculated by the broadcast ephemeris, its IOD matches with the IODN of the orbit correction message;

 δX — The satellite position correction.

The satellite position correction δX is calculated with formulas (7-6) \sim (7-9):

$$e_{radial} = \frac{r}{|r|} \tag{7-6}$$

$$e_{cross} = \frac{r \times r}{|r \times \dot{r}|} \tag{7-7}$$

$$e_{along} = e_{cross} \times e_{radial} \tag{7-8}$$

$$\delta X = \begin{bmatrix} e_{radial} & e_{along} & e_{cross} \end{bmatrix} \delta O \tag{7-9}$$

Where :

 $r = X_{broadcast}$ —— The satellite position vector of broadcast ephemeris;

 $\dot{r} = \dot{X}_{broadcast}$ —— The satellite velocity vector of broadcast ephemeris;

 e_i — Direction unit vector, $i = \{radial, along, cross\}$ corresponds to the radial, along and cross directions respectively;

 δO — The orbit correction vector obtained from PPP information in order of radial, along and cross components.

7.5 Clock Correction

The parameter included in the clock correction message is the correction parameter relative to the clock offset of the broadcast ephemeris. See formula (7-10) for how to use this correction parameter:

$$t_{satellite} = t_{broadcast} - \frac{C_0}{c}$$
(7-10)

Where:

 $t_{broadcast}$ — The satellite clock offset parameters calculated from the broadcast ephemeris;

 $t_{satellite}$ ——The satellite clock offset parameters corrected by the clock correction message;

c —— Velocity of light;

 C_0 —— The clock correction parameters obtained from PPP-B2b message.

7.6 User Range Accuracy Index (URAI)

The parameter URAI of each satellite is 6 bits. The highest 3 bits are defined as user range accuracy class (URA_{CLASS}), and the lowest 3 bits are defined as user range accuracy value (URA_{VALUE}). The calculation formula of URA is:

$$URA[mm] \le 3^{URA_{CLASS}} (1 + 0.25*URA_{VALUE}) - 1$$
(7-11)

Where: URA is the user range accuracy in mm (millimeter);

When URAI =000000 (binary), it means URA is undefined or unknown, and the SSR correction of the corresponding satellite is not reliable.

When URAI = 111111 (binary), it means that URA > 5466.5 mm.

7.7 System Time Solution

All of the correction parameters broadcast by PPP-B2b signal use BDT as their time reference. When users use multiple navigation systems to perform precise positioning resolution, it is necessary to set different receiver clock offset parameters for different navigation systems at each epoch.

8 Abbreviations

BDCS	BeiDou Coordinate System
BDS	BeiDou Navigation Satellite System
BDT	BeiDou Navigation Satellite System Time
bps	bits per second
BPSK	Binary Phase Shift Keying
CGCS2000	China Geodetic Coordinate System 2000
CRC	Cyclic Redundancy Check
GEO	Geostationary Earth Orbit
GLONASS	Global Navigation Satellite System
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
ICD	Interface Control Document
IERS	International Earth Rotation and Reference Systems Service
IGSO	Inclined Geo-Synchronous Orbit
IOD	Issue of Data
IODC	Issue of Data, Clock
IODN	Issue of Data, Navigation
IODP	Issue of Data, PRN mask
IOD SSR	Issue of Data, SSR
IRM	IERS Reference Meridian
IRP	IERS Reference Pole
LDPC	Low Density Parity Check
MEO	Medium Earth Orbit
NTSC	National Time Service Center
OS	Open Service
PPP	Precise Point Positioning

PRN	Pseudo-Random Noise
RHCP	Right-Hand Circular Polarization
RMS	Root Mean Square
sps	symbols per second
SSR	State Space Representation
URA	User Range Accuracy
URAI	User Range Accuracy Index
UTC	Universal Time Coordinated
WN	Week Number

Annex Non-binary LDPC Encoding and Decoding Methods

1. Non-binary LDPC Encoding

The generator matrix **G** is obtained from the parity-check matrix $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2]$ of the non-binary LDPC (n,k) code. And then, the codeword **c** of length *n* can be generated by encoding the input information sequence **m** of length *k* with the generator matrix **G**, i.e., $\mathbf{c} = (\mathbf{c}_0, \mathbf{c}_1, ..., \mathbf{c}_{n-1}) = \mathbf{m} \cdot \mathbf{G} = [\mathbf{m}, \mathbf{p}]$, where, $\mathbf{c}_j \ (0 \le j < n)$ is the *j*th codeword symbol, and $\mathbf{p} = \mathbf{m} \cdot (\mathbf{H}_2^{-1} \cdot \mathbf{H}_1)^{\mathrm{T}}$ is the check sequence.

The method for generating the generator matrix **G** is given as follows:

Step 1: The matrix **H** of size $(n-k) \times n$ is expressed as: $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2]$, where the size of \mathbf{H}_1 is $(n-k) \times k$, and the size of \mathbf{H}_2 is $(n-k) \times (n-k)$.

Step 2: Convert the matrix **H** into the systematic form, i.e., multiply **H** with \mathbf{H}_2^{-1} from the left to generate a parity-check matrix $\hat{\mathbf{H}} = [\mathbf{H}_2^{-1} \cdot \mathbf{H}_1, \mathbf{I}_{n-k}]$, where \mathbf{I}_{n-k} is a unit matrix of size (n-k) × (n-k).

Step 3: The generator matrix is computed as $\mathbf{G} = [\mathbf{I}_k, (\mathbf{H}_2^{-1} \cdot \mathbf{H}_1)^T]$, where \mathbf{I}_k is a unit matrix of size k×k.

(1) Encoding Example

The B-CNAV3 message data are encoded by one 64-ary LDPC(162, 81) code. Assume that the input information is

 The corresponding 64-ary information is

 [10 50 19 33 10 38 16 41 44 47 28 5 14 58 9 52 34 63 5 28 6

 0 49 52 55 5 25 16 51 27 58 11 16 9 8 55 37 35 9 54 39

61

22

 32
 25
 4
 15
 7
 11
 15
 26
 3
 57
 60
 31
 31
 21
 57
 23
 7
 49
 24
 15
 25

 6
 8
 60
 61
 36
 3
 15
 22
 52
 0
 2
 10
 41
 46
 41
 28
 35];

After encoding, the output codeword is

[0010101100100100111000010010101001100100011011001011110111000001010011101110100010011101001000101111110001010110010110110111010000001100011101001101110001010110010100001101110101110111010100000010010100001101110001010110010100011101010101110101010100000010010010001101110001010100110100011101011101000000000110010001000011110001110010110110001100000101011010001000011111010101111001000111001011011000110100000000001100110100111011110010101010001110111100111000000000001100110100101011011011010010110110010110110100110100000000001100101010110101011011010010110110110100110100110100000000001100101010111110011011010010110110110100110100000000001100101010111110011011010010110110110100110100100111010110101011111000011011010010100010100010110100100011010011101011010101<t

The corresponding 64-ary codeword is

[10	50	19	33	10	38	16	41	44	47	28	5	14	58	9	52	34	63	5	28	6	61
	0	49	52	55	5	25	16	51	27	58	11	16	9	8	55	37	35	9	54	39	22
	32	25	4	15	7	11	15	26	3	57	60	31	31	21	57	23	7	49	24	15	25
	6	8	60	61	36	3	15	22	52	0	2	10	41	46	41	28	35	36	46	57	0
	55	1	22	45	50	9	27	9	26	3	11	41	21	31	13	43	30	13	61	31	20
	8	6	36	3	45	12	57	59	23	10	43	45	63	1	60	15	47	10	6	40	56
	24	2	19	19	46	43	19	61	26	1	7	61	11	55	48	43	49	44	50	27	31
	27	12	60	51	58	15	6	29	61	39	38	5	53	34]	;						

(2) Mapping Relationship

After 64-ary LDPC encoding, each codeword symbol is composed of 6 bits, which is defined over GF(2⁶) domain with the primitive polynomial of $p(x)=1+x+x^6$. Each element

in Galois field can be described by the vector representation and power representation.

The mapping from the vector representation of 64 field elements to the power representation is shown as follows:

1															
∞	0	1	6	2	12	7	26	3	32	13	35	8	48	27	18
4	24	33	16	14	52	36	54	9	45	49	38	28	41	19	56
5	62	25	11	34	31	17	47	15	23	53	51	37	44	55	40
10	61	46	30	50	22	39	43	29	60	42	21	20	59	57	58]

The mapping from the power representation of 63 non-zero elements to the vector representation is shown as follows:

[1	2	4	8	16	32	3	6	12	24	48	35	5	10	20	40
19	38	15	30	60	59	53	41	17	34	7	14	28	56	51	37
9	18	36	11	22	44	27	54	47	29	58	55	45	25	50	39
13	26	52	43	21	42	23	46	31	62	63	61	57	49	33]	•

2. Non-binary LDPC Decoding

One codeword $\mathbf{c} = (\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1})$ generated by the non-binary LDPC (*n,k*) encoding is transmitted over a channel with the modulation. On the receiving side, the corresponding sequence $\mathbf{y} = (\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{n-1})$ is received, where $\mathbf{y}_j = (y_{j,0}, y_{j,1}, \dots, y_{j,r-1})$ is the received information corresponding to the *j*th codeword symbol \mathbf{c}_j ($\mathbf{c}_j \in GF(q), q = 2^r$, $0 \le j < n$).

The parity-check matrix \mathbf{H} of the non-binary LDPC code can be used to check the correctness of the received sequence \mathbf{y} . The specific method is described as follows:

A hard decision codeword $\hat{\mathbf{c}} = (\hat{\mathbf{c}}_0, \hat{\mathbf{c}}_1, ..., \hat{\mathbf{c}}_{n-1})$ is obtained by making hard decision on the received sequence **y** bit by bit. The check sum is calculated as $\mathbf{s} = \hat{\mathbf{c}} \mathbf{H}^T$. If $\mathbf{s} = \mathbf{0}$, $\hat{\mathbf{c}}$ is output as the correct decoding, otherwise $\hat{\mathbf{c}}$ is erroneous.

The parity-check matrix **H** describes the connection relationship of the check node CN and the variable node VN, i.e., the reliability information can be transmitted between the connected CN and VN. For the parity-check matrix **H** of size $m \times n$, each element $h_{i,j} \in GF(q)$ is an element in GF(q), while each row corresponds to a check node CN and each column corresponds to a variable node VN.

Two index sets are given as follows:

$$M_{j} = \{i : 0 \le i < m, h_{i,j} \ne 0\}, 0 \le j < n$$
$$N_{i} = \{j : 0 \le j < n, h_{i,j} \ne 0\}, 0 \le i < m$$

If $h_{i,j} \neq 0$, the check node CN_i is connected to the variable node VN_j . The reliability vector transmitted from the variable node VN_j to the connected check node CN_i ($i \in M_j$) is denoted as $V2C_{j\rightarrow i}$, and can be used to calculate the check sum of CN_i . The reliability vector transmitted from the check node CN_i to the connected variable node VN_j ($j \in N_i$) is denoted as $C2V_{i\rightarrow j}$, and can be used to estimate the symbol value of VN_j . $V2C_{j\rightarrow i}$ and $C2V_{i\rightarrow j}$ are iteratively updated by using the reliability transmitting decoding algorithm to correct the received sequence **y**, and then the codeword c is correctly estimated.

Two iterative reliability transmitting decoding algorithms used to estimate the codeword c are listed in the following contents.

(1) Extended Min-Sum Method

Set the mean noise value of the additive white Gaussian noise channel as zero and the variance as σ^2 . The reliability vector \mathbf{L}_j is calculated according to the received symbol vector \mathbf{y}_j corresponding to each codeword symbol \mathbf{c}_j . The reliability vector \mathbf{L}_j consists of all q Galois field elements $x \in GF(q)$ and their logarithmic likelihood ratio (LLR) values LLR(x), where the l^{th} ($0 \le l < q$) element of \mathbf{L}_j consists of the l^{th} Galois field symbol x and its LLR value. The logarithmic likelihood ratio of the Galois field element x in the reliability vector \mathbf{L}_j is

LLR(x) = log(
$$\frac{P(\mathbf{y}_{i} | \hat{x})}{P(\mathbf{y}_{i} | x)}$$
) = $\frac{2\sum_{b=0}^{r-1} |y_{j,b}| \Delta_{j,b}}{\sigma^{2}}$

where \hat{x} is the element in GF(q) which maximizes the probability $P(\mathbf{y}_j | x)$, i.e., the hard decision symbol of \mathbf{y}_j . The bit sequences of the Galois field elements x and \hat{x} are $x = (x_0, x_1, ..., x_{r-1})$ and $\hat{x} = (\hat{x}_0, \hat{x}_1, ..., \hat{x}_{r-1})$, respectively. $\Delta_{j,b} = x_b$ XOR \hat{x}_b , where XOR is exclusive-OR operation, that is, if x_b and \hat{x}_b are the same, $\Delta_{j,b} = 0$, otherwise, $\Delta_{j,b} = 1$.

In the extended Min-Sum decoding algorithm, the length of each reliability vector \mathbf{L}_{j} is reduced from q to n_m ($n_m \ll q$), i.e., truncating the n_m most reliable field elements (i.e., the smallest LLR values) from the reliability vector. The extended Min-Sum decoding algorithm is shown as follows:

Initialization: Set the maximum number of iterations as itr_{max} and the current iteration number itr as zero. The reliability vector $\mathbf{L}_{\mathbf{i}}$ ($0 \le j < n$) is calculated from the

received vector \mathbf{y}_{j} . Initialize all $V2C_{j \to i}$ vectors of each variable node VN_{j} with \mathbf{L}_{j} . Step 1: For each variable node VN_{j} ($0 \le j < n$), the decision symbol $\hat{\mathbf{c}}_{j}$ and the

reliability vector $V2C_{j \rightarrow i}$ are calculated according to the variable node updating rule.

Step 2: Calculate the check sum $\mathbf{s} = \hat{\mathbf{c}} \mathbf{H}^{\mathrm{T}}$. If $\mathbf{s} = \mathbf{0}$, output the decision sequence $\hat{\mathbf{c}}$ as decoding result and exit the decoding, otherwise, go into Step 3.

Step 3: For each check node CN_i ($0 \le i < m$), the reliability vector $C2V_{i \to j}$ is calculated according to the check node updating rule.

Step 4: Let itr=itr+1. If $itr=itr_{max}$, exit decoding and declare a decoding failure, otherwise, go into Step 1.

1) Updating Rules of Variable Nodes

If the current iteration number itr=0, the reliability vector \mathbf{L}_{j} of each codeword symbol is arranged in ascending order according to its LLR values of the q field elements. The first n_m elements in the sorted \mathbf{L}_{j} constitute the truncated reliability vector $\mathbf{L}_{j,\mathbf{n}_m} = (\mathbf{x}_{\mathbf{n}_m}, \text{LLR}(\mathbf{x}_{\mathbf{n}_m}))$. Initialize $\text{V2C}_{j \rightarrow i}$ as $\mathbf{L}'_{j,\mathbf{n}_m}$:

$$V2C_{j \to i} = \mathbf{L}'_{\mathbf{j},\mathbf{n}_{\mathbf{m}}} = \mathbf{L}_{\mathbf{j},\mathbf{n}_{\mathbf{m}}} \cdot h_{i,j} = (\mathbf{x}_{\mathbf{n}_{\mathbf{m}}} \cdot h_{i,j}, \text{LLR}(\mathbf{x}_{\mathbf{n}_{\mathbf{m}}}))$$

where $\mathbf{x}_{\mathbf{n}_m}$ is the vector containing the n_m truncated Galois field elements, and $\mathbf{x}_{\mathbf{n}_m} \cdot h_{i,j}$ is the Galois field multiplication of $h_{i,j}$ and n_m Galois field elements in $\mathbf{x}_{\mathbf{n}_m}$.

If the current iteration number $itr \neq 0$, it is assumed that $C2V_{f \rightarrow j}$ is the reliability vector of length n_m which is transmitted from the check node CN_f to the connecting variable node VN_j and then the reliability vector $V2C_{j \rightarrow i}$ can be calculated by using all the received reliability vectors, $C2V_{f \rightarrow j}$ ($f \in M_j$, $f \neq i$), as follows:

$$V2C_{j \to i} = h_{i,j} \cdot \left(\sum_{f \in M_j, f \neq i} C2V_{f \to j} \cdot h_{f,j}^{-1} + \mathbf{L}_j \right)_{n_m} = (\mathbf{Rs}_{j \to i}, \mathbf{R}_{j \to i})$$

where the Galois field element $h_{f,j}^{-1}$ is the inverse element of $h_{f,j}$, i.e., $h_{f,j}^{-1} h_{f,j} = 1$. In the above equation, the sum operation adds the LLR values of the same elements in each reliability vector $C2V_{f\rightarrow j}h_{f,j}^{-1}$. (•)_{n_m} operation indicates that the field elements in the reliability vector are sorted by ascending order and then the first n_m different Galois field elements are truncated. $\mathbf{Rs}_{j\rightarrow i}$ is a vector consisting of the first n_m Galois field elements, and $\mathbf{R}_{j\rightarrow i}$ is a vector consisting of the corresponding LLR values. The LLR of the $q-n_m$ Galois field elements discarded from the reliability vector $C2V_{f\rightarrow j}$ is set as the sum of the maximum LLR value in $C^{2V_{f \rightarrow j}}$ and a fixed offset. After each reliability vector $V^{2C_{j \rightarrow i}}$ is calculated, the LLR value of each element in the reliability vector subtracts LLR_{min} which is the minimum LLR value in this reliability vector.

In addition, a decision should be made on each variable node in each iteration. The Galois field element corresponding to LLR_{min} in the reliability vector $\{\sum_{f \in M_j} C2V_{f \to j}, h_{f,j}^{-1} + L_j\}$ of length q is selected as a decision value. The related decision formula is

$$\hat{\mathbf{c}}_{\mathbf{j}} = \arg\min_{x \in \mathrm{GF}(q)} \{ \sum_{f \in M_j} \mathrm{C2V}_{f \to j}, h_{f,j}^{-1} + \mathbf{L}_{\mathbf{j}} \}, 0 \le j < n$$

The decision symbol $\hat{\mathbf{c}}_j$ is transmitted together with the reliability vector $V2C_{j\rightarrow i}$ to the corresponding check node. It is checked whether the current iteration decoding vector $\hat{\mathbf{c}} = (\hat{\mathbf{c}}_0, \hat{\mathbf{c}}_1, \dots, \hat{\mathbf{c}}_{n-1})$ satisfies that $\mathbf{s} = \hat{\mathbf{c}} \mathbf{H}^T$ is a zero vector.

2) Updating Rules of Check Nodes

For each check node CN_i ($0 \le i < m$), all reliability vectors $V2C_{j \to i}$ from the connected variable nodes are received. The reliability vector $C2V_{i \to j}$ is calculated by

$$C2V_{i \to j} = \sum_{\gamma \in N_i, \gamma \neq j} V2C_{\gamma \to i}$$

where, each sum operation is defined as the basic calculation of the check node; when two reliability vectors containing n_m Galois field elements and their LLR vectors are inputted, the candidate elements are obtained by the sum of the Galois field elements of different reliability vectors, and their LLR values are calculated at the same time. The LLR values of the candidate elements are sorted by ascending order and then the first n_m LLR values are truncated. The output reliability vector consists of the n_m LLR values and their Galois field elements.

The two input reliability vectors of the check nodes is given as $(\mathbf{U}_s, \mathbf{U})$ and $(\mathbf{Q}_s, \mathbf{Q})$, and the output reliability vector is given as $(\mathbf{V}_s, \mathbf{V})$, where \mathbf{U} , \mathbf{Q} , \mathbf{V} are the LLR vectors of length n_m arranged in ascending order, and \mathbf{U}_s , \mathbf{Q}_s , \mathbf{V}_s are the corresponding Galois field element vectors. According to the input reliability vectors, the reliability matrix \mathbf{M} of size $n_m \times n_m$ and the Galois field element matrix \mathbf{M}_s are constructed as follows:

$$M_{s}[d,\rho] = U_{s}[d] \oplus Q_{s}[\rho]$$
$$M[d,\rho] = U[d] + Q[\rho]$$

where, $d, \rho \in \{0, 1, ..., n_m - 1\}$ and \oplus is the Galois field addition operation.

The basic formula for the check node is

$$V[\varepsilon] = \min_{d \in [0,1]} \max_{n \in [0,1]} \{M[d,\rho]\}_{V_s[\varepsilon] = M_s[d,\rho]}, 0 \le \varepsilon < n_m$$

The implementation of the above equations can be completed by operating the register S of size n_m as follows:

Initialize: Store the first column of **M** into **S**, and let $S[\zeta] = M[\zeta, 0]$, $\zeta \in \{0, 1, ..., n_m - 1\}$. Let $\varepsilon = 0$.

Step 1: Find the minimum value in **S**. (Suppose $M[d, \rho]$ is the smallest value of the corresponding **S**.)

Step 2: If the Galois field element corresponding to the found minimum value does not exist in \mathbf{V}_s , $V[\varepsilon]$ is filled with the minimum value in \mathbf{S} , and $V_s[\varepsilon]$ is filled with the corresponding Galois field element, and $\varepsilon = \varepsilon + 1$. Otherwise, no action.

Step 3: Replace the minimum value in **S** by $M[d, \rho+1]$, i.e., the element on the right of the corresponding element in **M**.

Step 4: Go to Step 1 until $\varepsilon = n_m$.

(2) Fixed Path Decoding Method

The fixed path decoding method is an efficient decoding algorithm, and its algorithm procedure is consistent with that of the extended Min-Sum method, except that the check node updating rules are different. Take check nodes with row weight $d_c=4$ (i.e., each check node receives four input reliability vectors) as an example, the check node updating rules of the fixed path decoding method are described as follows:

For each check node CN_i ($0 \le i < m$), the fixed path deviation value vector $\mathbf{E}_i = (\mathbf{Rs}_i, \mathbf{R}_i)$ of length $8+2 n_m$ is calculated by using four received reliability vectors $V2C_{j \to i} = (\mathbf{Rs}_{j \to i}, \mathbf{R}_{j \to i})$ ($j \in N_i$) transmitted from the connected variable nodes, where \mathbf{Rs}_i is the Galois field element vector of length $8+2 n_m$ (the vector may contain the same Galois field elements), and \mathbf{R}_i is the corresponding LLR vector.

In order to compute each fixed path deviation value, the four reliability vectors $V2C_{j\rightarrow i}$ are sorted in ascending order according to the LLR values $R_{j\rightarrow i}[1]$ of the second elements $V2C_{j\rightarrow i}[1] = (Rs_{j\rightarrow i}[1], R_{j\rightarrow i}[1])$ (i.e., its subscript is "1") of $V2C_{j\rightarrow i}$. The four sorted vectors are defined as $(\mathbf{Rs}_{1,i}, \mathbf{R}_{1,i})$, $0 \le l < 4$, i.e., $R_{0,i}[1] \le R_{1,i}[1] \le R_{3,i}[1]$, where $\mathbf{Rs}_{1,i}$ is the Galois field element vector of length n_m , and $\mathbf{R}_{1,i}$ is the corresponding LLR vector. Then, the fixed path deviation value vector $\mathbf{E}_i = (\mathbf{Rs}_i, \mathbf{R}_i)$ is computed according to $\mathbf{Rs}_{1,i}$ and $\mathbf{R}_{1,i}$ which are calculated by the equations as follows:

$$Rs_{i}[e] = \begin{cases} \sum_{0 \le l < 4} Rs_{l,i}[0], & e = 0 \\ Rs_{e-1,i}[1] \oplus \sum_{0 \le l < 4, l \neq e-1} Rs_{l,i}[0], & 1 \le e \le 4 \\ Rs_{0,i}[1] \oplus Rs_{e-4,i}[1] \oplus \sum_{1 \le l < 4, l \neq e-4} Rs_{l,i}[0], & 5 \le e \le 7 \\ Rs_{0,i}[0] \oplus Rs_{1,i}[1] \oplus Rs_{2,i}[1] \oplus Rs_{3,i}[0], & e = 8 \\ Rs_{0,i}[0] \oplus Rs_{1,i}[1] \oplus Rs_{2,i}[0] \oplus Rs_{3,i}[1], & e = 9 \\ Rs_{e-10,i}[2] \oplus \sum_{0 \le l < 4, l \neq e-10} Rs_{l,i}[0], & 10 \le e < 14 \\ Rs_{\theta,i}[e-11] \oplus \sum_{0 \le l < 4, l \neq \theta} Rs_{l,i}[0], & 14 \le e < 11 + n_{m} \\ Rs_{\beta,i}[e-8-n_{m}] \oplus \sum_{0 \le l < 4, l \neq \theta} Rs_{l,i}[0], & 11 + n_{m} \le e < 8 + 2n_{m} \end{cases}$$

$$R_{i}[e] = \begin{cases} R_{e-1,i}[1], & 1 \le e \le 4 \\ R_{0,i}[1] + R_{e-4,i}[1], & 5 \le e \le 7 \\ R_{1,i}[1] + R_{e-6,i}[1], & 8 \le e \le 9 \\ R_{e-10,i}[2], & 10 \le e < 14 \\ R_{\theta,i}[e-11], & 14 \le e < 11 + n_{m} \\ R_{\beta,i}[e-8-n_{m}], & 11 + n_{m} \le e < 8 + 2n_{m} \end{cases}$$

Where, θ and β represent the subscripts *l* of the vector $\mathbf{R}_{l,i}$ whose $(\lfloor n_m/2 \rfloor + 1)^{th}$ LLR values (i.e., its subscript is $\lfloor n_m/2 \rfloor$) are the minimum and second smallest values, respectively. The sum operation and \oplus in the above equation are the Galois field addition operation.

Set two flag vectors **T** and $\overline{\mathbf{T}}$ of length $8+2 n_m$ and initialize them to all "1" vectors. The updating rules for the first $0 \le k_R < 8+2n_m$ values of the flag vectors **T** and $\overline{\mathbf{T}}$ are defined by the following equations:

$$T[k_{R}] = \begin{cases} 1, R_{i}[k_{R}] \leq R_{\theta,i}[\lfloor n_{m} / 2 \rfloor] \\ 0, R_{i}[k_{R}] > R_{\theta,i}[\lfloor n_{m} / 2 \rfloor] \end{cases}$$
$$\overline{T}[k_{R}] = \begin{cases} 1, R_{i}[k_{R}] \leq R_{\beta,i}[\lfloor n_{m} / 2 \rfloor] \\ 0, R_{i}[k_{R}] > R_{\beta,i}[\lfloor n_{m} / 2 \rfloor] \end{cases}$$

According to the fixed path deviation vector and the flag vectors, four output reliability

BDS-SIS-ICD-PPP-B2b-1.0 2020-07 vectors $(\mathbf{Us}_{i,1}, \mathbf{U}_{i,1})$ of length n_m are updated by the following equations:

$$\mathbf{Us}_{i,1} = (Rs_i [w] \oplus Rs_{l,i} [0])_{n_m}$$
$$\mathbf{U}_{i,1} = (R_i [w])_n$$

where, $0 \le l < 4$, and the value range of w is determined by the different cases. In the case of l=0, if $\theta \ne 0$, the value range of w is

$$\{w \mid T[w] = 1\} \cap \{\{w = 0\} \cup \{1 < w \le 4\} \cup \{8 \le w < 10\} \cup \{10 < w < 11 + n_m\}\}$$

otherwise, the value range of w is

 $\{w \mid \overline{T}[w] = 1\} \cap \{\{w = 0\} \cup \{1 < w \le 4\} \cup \{8 \le w < 10\} \cup \{10 < w < 14\} \cup \{w \ge 11 + n_m\}\}$ In the case of $1 \le l < 4$, if $l = \theta$, the value range of w is

 $\{w \mid \overline{T}[w] = 1\} \cap \{\{0 \le w \le 7\} \cup \{10 \le w < 14\} \cup \{w \ge 11 + n_m\}\} \cap \{\{w \ne l+1\} \cap \{w \ne 4+l\} \cap \{w \ne 10+l\}\} \text{ oth}$ erwise, the value range of w is

$$\{w \mid T[w] = 1\} \cap \{\{0 \le w \le 7\} \cup \{10 \le w < 11 + n_m\}\} \cap \{\{w \ne l + 1\} \cap \{w \ne 4 + l\} \cap \{w \ne 10 + l\}\}$$
 $Us_{i,l}[z]$

 $(0 \le z < n_m)$ corresponds to $Rs_i[w] \oplus Rs_{l,i}[0]$ calculated by the n_m smallest values of w, which doesn't need to eliminate the same symbols of $Us_{i,l}[z]$. Meanwhile, $U_{i,l}[z]$ is the corresponding LLR value of $Us_{i,l}[z]$.

The order of the four reliability vectors $(\mathbf{Us}_{i,l}, \mathbf{U}_{i,l})$ is aligned with the four sorted input vectors $(\mathbf{Rs}_{l,i}, \mathbf{R}_{l,i})$. Each input vector $(\mathbf{Rs}_{l,i}, \mathbf{R}_{l,i})$ corresponds to a $V2C_{j\rightarrow i}$ vector. Each reliability vector $C2V_{i\rightarrow j} = (\mathbf{Us}_{i,l}, \mathbf{U}_{i,l})$, $(j \in N_i)$ is updated and output according to the sequence order between $(\mathbf{Rs}_{l,i}, \mathbf{R}_{l,i})$ and $V2C_{j\rightarrow i}$.