ICD咨询邮箱 友情链接

当前位置: 科普园地 >> 趣闻故事 >> 正文

为什么要用相对论为GPS导航提供修正

发布时间:2011-09-24

大多数人会觉得,爱因斯坦相对论主要应用于高速状态、微观世界和宇观世界,离我们的日常生活似乎很遥远。其实不然,它也有贴近我们生活的一面,其中一个著名的例子就是全球定位系统(GPS)。GPS的误差来源里有一项是相对论效应的影响,通过修正相对论效应可以得到更准确的定位结果。

爱因斯坦的时间和空间一体化理论表明,卫星钟和接收机所处的状态(运动速度和重力位)不同,会造成卫星钟和接收机钟之间的相对误差。由于GPS定位是依靠卫星上面的原子钟提供的精确时间来实现的,而导航定位的精度取决于原子钟的准确度,所以要提供精确的卫星定位服务就需要考虑相对论效应。

狭义相对论认为高速移动物体的时间流逝得比静止的要慢。每个GPS卫星时速为1.4万千米,根据狭义相对论,它的星载原子钟每天要比地球上的钟慢7微秒。另一方面,广义相对论认为引力对时间施加的影响更大,GPS卫星位于距离地面大约2万千米的太空中,由于GPS卫星的原子钟比在地球表面的原子钟重力位高,星载时钟每天要快45微秒。两者综合的结果是,星载时钟每天大约比地面钟快38微秒。

这个时差看似微不足道,但如果我们考虑到GPS系统要求纳秒级的时间精度,这个误差就非常可观了。38微秒等于38000纳秒,如果不加以校正的话,GPS系统每天将累积大约10千米的定位误差,这会大大影响人们的正常使用。因此,为了得到准确的GPS数据,将星载时钟每天拨回38微秒的修正项必须计算在内。

为此,在GPS卫星发射前,要先把其时钟的走动频率调慢。此外,GPS卫星的运行轨道并非完美的圆形,有的时候离地心近,有的时候离地心远,考虑到重力位的波动,GPS导航仪在定位时还必须根据相对论进行计算,纠正这一误差。

一般说来,GPS接受器准确度在30米之内就意味着它已经利用了相对论效应。

由于广域增强系统依赖从地面基站发出的额外信号,以地面时间为基准,与卫星钟时间无关。因此配备了这种系统的GPS接收器,就不存在相对论效应了。

由此可见,GPS的使用既离不开狭义相对论,也离不开广义相对论。早在1955年就有物理学家提出可以通过在卫星上放置原子钟来验证广义相对论,GPS实现了这一设想,并让普通人也能亲身体验到相对论的威力。

北斗卫星导航系统政府网站独家稿件说明:本作品(文字、图片、图标、PPT、PDF及音视频)仅供北斗卫星导航系统政府网站使用,未经授权任何媒体和个人不得全部或部分转载。